Advertisement

Waste and Biomass Valorization

, Volume 10, Issue 3, pp 547–560 | Cite as

Multi-Analytical Approach and Geochemical Modeling for Mineral Trace Element Speciation in MSWI Bottom-Ash

  • Maria Lorena Gonzalez
  • Denise BlancEmail author
  • Christine de Brauer
case study

Abstract

The present research focused on the behavior of five mineral trace elements (MTE): Cr, Pb, Sb, Zn, and Ni. These MTE and their concentration levels are critical factors in bottom-ash (BA) reuse. Because of their multiple uses, these elements are present in all municipal solid waste. Moreover, because of their low concentrations in BA, traditional analysis tools such as XRD and FT-IR are not sufficiently accurate to detect them. This study aimed to define the speciation of the five main MTE through a multi-analytical approach. Several methods were used, each providing complementary information. Some of them are standard solid direct analysis; others are indirect leaching methods. A sequential extraction protocol was also conducted and the leaching behavior as a function of pH was modeled using the PHREEQCI® software. Among the five MTE studied, Cr (with high total content) was well stabilized in the matrix, while Ni (with low total content) was only leached at low pH values. Sb was chemically stable at pH > 9. Regarding Pb and Zn, all the methods used confirmed that leaching occurs in a wide range of pH values, except in neutral conditions where amphoteric behavior limits the leaching process. Among the five elements studied, Pb leaching showed the most restrictive behavior for MSWI BA valorization. The results obtained through the analytical methods applied are consistent and complement each other. They provide a good understanding of MTE chemical speciation and behavior.

Graphical Abstract

Keywords

Bottom-ash characterization Geochemical modeling Mineral trace element Sequential extraction 

Notes

Acknowledgements

The authors wish to thank SITA-SUEZ, the main sponsor of this study. We also acknowledge the LGCIE-DEEP analytical team for providing data and technical support.

References

  1. 1.
  2. 2.
    Vandecasteele, C., Wauters, G., Arickx, S., Jaspers, M., Van Gerven, T.: Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case. Waste Manag. 27, 1366–1375 (2007)CrossRefGoogle Scholar
  3. 3.
    Wei, Y., Shimaoka, T., Saffarzadeh, A., Takahashi, F.: Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J. Hazard. Mater. 187(1–3), 534–543 (2011)CrossRefGoogle Scholar
  4. 4.
    Cornelis, G., Van Gerven, T., Vandecasteele, C.: Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation. Waste Manag. 32, 278–286 (2012)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Keck, G., Vernus, E.: Déchets et risques pour la santé. Tech. de l’ing. - Gestion des déchets. g2450 (2000)Google Scholar
  7. 7.
    Paoletti, F.: Behavior of oxyanions forming heavy metals in municipal solid waste incineration. PhD Thesis, Universität Stuttgart (2002)Google Scholar
  8. 8.
    ADEME: Campagne de caractérisation des déchets ménagers et assimilés de la Guadelouipe. 40 p. https://guadeloupe.ademe.fr/sites/default/files/files/Mediatheque/Publications/campagne-caracterisation-dechets-menagers-assimiles-Guadeloupe.pdf (2012)
  9. 9.
    Fendeleur, S., Trouve, G., Delfosse, L.: Métaux lourds et incinération de déchets industriels: localisation et spéciation dans les cendres volantes et les mâchefers. Déchets Sci. Tech. 12, 21–26 (1998)Google Scholar
  10. 10.
    Nüsslein, F., Wunsch, P., Rampp, F., Kettrup, A.: Influence of combustion bed temperature on concentration and leachability of metals in slags from an incinerating plant. Chemosphere. 28(2), 349–356 (1994)CrossRefGoogle Scholar
  11. 11.
    Jung, C. H., Matsuto, T., Tanaka, N., Okada, T.: Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manag. 24(4), 381–391 (2004)CrossRefGoogle Scholar
  12. 12.
    Wang, K.S., Chiang, K.Y., Lin, S.M., Tsai, C.C., Sun, C.J.: Effects of chlorides on emissions of hydrogen chloride formation in waste incineration. Chemosphere 38(7), 1571–1582 (1999)CrossRefGoogle Scholar
  13. 13.
    Barton, R.G., Clark, W.D., Seeker, W.D.: Fate of metals in waste combustion systems. Combust. Sci. Technol. 74, 327–342 (1990)CrossRefGoogle Scholar
  14. 14.
    Belevi, H., Moench, H.: Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environ. Sci. Technol. 34, 2501–2506 (2000)CrossRefGoogle Scholar
  15. 15.
    Belevi, H., Langmeier, M.: Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments. Environ. Sci. Technol. 34, 2507–2512 (2000)CrossRefGoogle Scholar
  16. 16.
    Ménard, Y.: Modélisation de l’incinération sur grille d’ordures ménagères et approche thermodynamique du comportement des métaux lourds. PhD thesis, Institut National Polytechnique de Lorraine—INPL (2003)Google Scholar
  17. 17.
    Bruder-Hubscher, V., Lagarde, F., Leroy, M.J.F., Coughanowr, C., Enguehard, F.: Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Anal. Chim. Acta 451(2), 285–295 (2002)CrossRefGoogle Scholar
  18. 18.
    Yan, J., Bäverman, C., Moreno, L., Neretnicks, I.: Evaluation of the time-dependent neutralising behaviours of MSWI bottom ash and steel slag. Sci. Total Environ. 216, 41–54 (1998)CrossRefGoogle Scholar
  19. 19.
    Djikstra, J. J., Van Der Sloot, H. A., Comans, R. N. J.: The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Appl. Geochem. 21(2), 335–351 (2006)CrossRefGoogle Scholar
  20. 20.
    Parkhurst, D.L., Appelo, C.: User’s guide to PHREEQC (Version2): a computer program for speciation, batch-reaction, onedimensionaltransport, and inverse geochemical calculations (1999)Google Scholar
  21. 21.
    Peyronnard, O., Blanc, D., Benzaazoua, M., Moskowicz, P.: Study of leaching behaviour of stabilized/solidified sludge using differential acid neutralization analysis. Part 2: use of a numerical simulator as an aid tool for cementitious hydrates identification. Cem. Concr. Res. 39(6), 501–509 (2009)CrossRefGoogle Scholar
  22. 22.
    Chatain, V., Blanc, D., Borschneck, D., Delolme, C.: Determining the experimental leachability of copper, lead, and zinc in a harbor sediment and modeling. Environ. Sci. Pollut. Res. 20(1), 66–74 (2013)CrossRefGoogle Scholar
  23. 23.
    Delville, N.: Etude minéralogique et physico-chimique des mâchefers d’incinération des ordures ménagères en vue d’une utilisation en technique routière. PhD thesis, Université Blaise Pascal, Clermont-Ferrand (2003)Google Scholar
  24. 24.
    Li, M., Xiang, J., Hu, S., Sun, L.S., Su, S., Li, S., Li, P.-S., Sun, X.-X.: Characterization of solid residues from municipal solid waste incinerator. Fuel 83, 1397–1405 (2004)CrossRefGoogle Scholar
  25. 25.
    Chimenos, J. M., Segarra, M., Fernández, M. A., Espiell, F.: Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard. Mater. 64(3), 211–222 (1999)CrossRefGoogle Scholar
  26. 26.
    Chandler, A.J., Eighmy, T.T., Hartlén, J., Hjelmar, O., Kosson, D.S., Sawell, S.E., van der Sloot, H.A.: Vehlow, J. Leaching modeling. In: Leaching modeling in municipal solid waste incinerator residues, pp. 607–734. Amsterdam, Elsevier (1997)Google Scholar
  27. 27.
    Rendek, E.:Influence des procédés de la filière traitement thermique sur les caractéristiques et les évolutions bio-physico-chimiques des Mâchefers d’Incinération d’Ordures Ménagères (MIOM). PhD thesis, Institut National des Sciences Appliquées de Lyon (2006)Google Scholar
  28. 28.
    Cornelis, G., Van Gerven, T., Vandecasteele, C.: Antimony leaching from uncarbonated and carbonated MSWI bottom ash. J. Hazard. Mater. 137(3), 1284–1292 (2006)CrossRefGoogle Scholar
  29. 29.
    Van Gerven, T., Geysen, D., Stoffels, L., Jaspers, M., Wauters, G., Vandecasteele, C.: Management of incinerator residues in Flanders (Belgium) and in neighbouring countries. A comparison. Waste Manag. 25(1), 75–87 (2005)CrossRefGoogle Scholar
  30. 30.
    Forteza, R., Far, M., Seguí, C., Cerda, V.: Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manag. 24(9), 899–909 (2004)CrossRefGoogle Scholar
  31. 31.
    Sabbas, T., Polettini, A., Pomi, R., Astrup, T., Hjelmar, O., Mostbauer, P., Cappai, G., et al.: Management of municipal solid waste incineration residues. Waste Manag. 23, 61–88 (2003)CrossRefGoogle Scholar
  32. 32.
    Bayuseno, A. P., Schmahl, W. W.: Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 30, 1509–1520 (2010)CrossRefGoogle Scholar
  33. 33.
    Smidt, E., Meissl, K., Tintner, J., Ottner, F.: Interferences of carbonate quantification in municipal solid waste incinerator bottom ash: evaluation of different methods. Environ. Chem. Lett. 8, 217–222 (2010)CrossRefGoogle Scholar
  34. 34.
    Madejova, J.: FTIR techniques in clay mineral studies. Vib. Spectrosc. 31, 1–10 (2003)CrossRefGoogle Scholar
  35. 35.
    Smidt, E., Meissl, K., Schwanninger, M., Lechner, P.: Classification of waste materials using Fourier transform infrared spectroscopy and soft independent modeling of class analogy. Waste Manag. 28(10), 1699–1710 (2008)CrossRefGoogle Scholar
  36. 36.
    Bosch, R.F., Gimeno, A.J.V., Moreno, M.M.C.M.: FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ration method. Application to geological samples. Talanta 58, 811–821 (2002)CrossRefGoogle Scholar
  37. 37.
    de Brauer, C., Germain, P., Achour, F., Ducom, G., Bayard, R.: Caractérisation de déchets par analyse thermique. Colloque Eau, Déchets et Développement Durable (E3D), 28–31 mars 2010, Alexandrie, Egypte (2010)Google Scholar
  38. 38.
    Smidt, E., Tintner, J.: Application of differential scanning calorimetry (DSC) to evaluate the quality of compost organic matter. Thermochim. Acta 459(1–2), 87–93 (2007)CrossRefGoogle Scholar
  39. 39.
    Melis, P., Paola, C.: Thermal analysis for the evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim. Acta 413, 209–214 (2004)CrossRefGoogle Scholar
  40. 40.
    Otero, M., Calvo, L. F., Estrada, B., García, A. I., Morán, A.: Thermogravimetry as a technique for establishing the stabilization progress of sludge from wastewater treatment plants. Thermochim. Acta 389(1–2), 121–132 (2002)CrossRefGoogle Scholar
  41. 41.
    Carrasco-Hurtado, B., Corpas-Iglesias, F.A., Cruz-Pérez, N., Terrado-Cepeda, J., Pérez-Villarejo, L.: Addition of bottom ash from biomass in calcium silicate masonry units for use as construction material with thermal insulating properties. Constr. Build. Mater. 52, 155–165 (2014)CrossRefGoogle Scholar
  42. 42.
    Quevauviller, Ph., Rauret, G., Lopez-Sanchez, J.-F., Rubio, R., Ure, A. M., Muntau, H.: Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Sci. Total Environ. 205, 223–234 (1998)CrossRefGoogle Scholar
  43. 43.
    Rocca, S., van Zomeren, A., Costa, G., Djikstra, J.J., Comans, R.N.J., Lombardi, F.: Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species. Waste Manag. 33, 373–381 (2013)CrossRefGoogle Scholar
  44. 44.
    Marin, B., Valladon, M., Polve, M., Monaco, A.: Reproductibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 342, 91–112 (1997)CrossRefGoogle Scholar
  45. 45.
    Guerin, L.: Devenir des polluants inorganiques contenus dans les résidus solides issus de la combustion des déchets ménagers. Spéciation et élaboration de tests de mobilité en vue de leur stockage ou de leur valorisation. PhD thesis, Université de Toulon et du Var, Toulon (2000)Google Scholar
  46. 46.
    Piredda, M.: Stabilization of MSW combustion residues by accelerated carbonation treatment and their potential carbon dioxide sequestration. PhD Thesis. Università degli Studi di Cagliari (2011)Google Scholar
  47. 47.
    Kirby, C. S., Rimstidt, J. D.: Mineralogy and surface properties of municipal solid waste ash. Environ. Sci. Technol. 27, 652–660 (1993)CrossRefGoogle Scholar
  48. 48.
    Zhang, H., Shimaoka, T.: Effect of composted sewage sludge on metals leaching behavior in municipal solid waste incineration bottom ash. Appl. Mech Mater. 295–298, 418–421 (2013)Google Scholar
  49. 49.
    Kersten, M., Christophmoor, H., Johnson, C.: Speciation of trace metals in leachate from a MSWI bottom ash landfill. Appl. Geochem. 12(5), 675–683 (1997)CrossRefGoogle Scholar
  50. 50.
    Meima, J.A., Comans, R.N.J.: The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering. Appl. Geochem. 14, 159–171 (1999)CrossRefGoogle Scholar
  51. 51.
    Meima, J. A., Comans, R. N. J.: Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash. Environ. Sci. Technol. 31(5), 1269–1276 (1997)CrossRefGoogle Scholar
  52. 52.
    Yan, J., Moreno, L., Neretnicks, I.: The neutralization behavior of MSWI bottom ash on different time scales and in different reaction systems. Waste Manag. 19, 339–347 (1999)CrossRefGoogle Scholar
  53. 53.
    Johnson, C. A., Brandenberger, S., Baccini, P.: Acid neutralizing capacity of municipal waste incinerator bottom ash. Environ. Sci. Technol. 29(1), 142–147 (1995)CrossRefGoogle Scholar
  54. 54.
    Izquierdo, M., Querol, X.: Leaching behaviour of elements from coal combustion fly ash: an overview. Int. J. Coal Geol. 94, 54–66 (2012)CrossRefGoogle Scholar
  55. 55.
    Cornelis, G., Poppe, S., Van Gerven, T., Van den Broeck, E., Ceulemans, M., Vandecasteele, C.: Geochemical modelling of arsenic and selenium leaching in alkaline water treatment sludge from the production of non-ferrous metals. J. Hazard. Mater. 159, 271–279 (2008)CrossRefGoogle Scholar
  56. 56.
    Zhang, H., He, P.-J., Shao, L.-M., Li, X.-J.: Leaching behavior of heavy metals from municipal solid waste incineration bottom ash and its geochemical modeling. J. Mater. Cycles Waste Manag. 10(1), 7–13 (2008)CrossRefGoogle Scholar
  57. 57.
    Chrysochoou, M., Dermatas, D.: Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study. J. Hazard. Mater. 136(1), 20–33 (2006)CrossRefGoogle Scholar
  58. 58.
    Meima, J. A., Comans, R. N. J.: Application of surface complexation/precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash. Environ. Sci. Technol. 32(5), 688–693 (1998)CrossRefGoogle Scholar
  59. 59.
    van Caneghem, J., Verbinnen, B., Cornelis, G., de Wijs, J., Mulder, R., Billen, P., Vandecasteele, C.: Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives. Waste Manag. 54, 162–168 (2016)CrossRefGoogle Scholar
  60. 60.
    del Valle-Zermeño, R., Chimenos, J.M., Giró-Paloma, J., Formosa, J.: Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier. Chemosphere 117, 402–409 (2014)CrossRefGoogle Scholar
  61. 61.
    De Windt, L., Dabo, D., Lidelöwc, S., Badreddine, R., Lagerkvist, A.: MSWI bottom ash used as basement at two pilot-scale roads: comparison of leachate chemistry and reactive transport modeling. Waste Manag. 31, 267–280 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Université de Lyon, INSA Lyon, LGCIE-DEEP, EA4126Villeurbanne CedexFrance

Personalised recommendations