Waste and Biomass Valorization

, Volume 10, Issue 2, pp 369–376 | Cite as

Landfill Leachate Effects on Germination and Seedling Growth of Hemp Cultivars (Cannabis Sativa L.)

  • Magdalena Daria VaverkováEmail author
  • Jan Zloch
  • Dana Adamcová
  • Maja Radziemska
  • Tomáš Vyhnánek
  • Václav Trojan
  • Jan Winkler
  • Biljana Đorđević
  • Jakub Elbl
  • Martin Brtnický
Original Paper


Landfill leachate is one of the major sources of pollutions discharged into the environment. It is composed from a complex mixture of chemicals and handling typically involves treatment either on-site or at a wastewater treatment plants but phytoremediation is a promising method. The aim of this work was to evaluate the potential of agronomic plant species with high annual biomass yield (Cannabis sativa L.) for toxicity removal from landfill leachate. Raw leachate collected from the pond of untreated leachate at sanitary landfill in Czech Republic was used in the study. The hemp cultivation experiments were performed in the beginning of 2017 under laboratory conditions using three hemp cultivars registered in the European Union: Tiborszállási (Hungary), Bialobrzeska (Poland) and Monoica (Hungary). The seeds were used for modified standard mustard germination test. The germination of hemp cultivars was tested using the hydroponics medium supplemented with leachate 25, 50, 75, 90 and 100%. The control seeds were growing on untreated nutrient medium under the same condition. The nature of germination of seeds was studied. Based on the obtained results, it can be concluded that the tested samples of leachate were toxic for hemp cultivars (C. sativa L.). Growth inhibition (%) at the studied samples ranged from −6.48 to 75.78%.

Graphical Abstract


Phytotoxicity Toxicity Landfill leachate Cannabis sativa L. 



The research was financially supported by the IGA FA MENDELU No. TP 5/2017. Authors thank Mr. Hermes Villafaña (Language Coach) for the linguistic comments on manuscript.


  1. 1.
    Singh, A., Prasad, S.M.: Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int. J. Environ. Sci. Technol. 12, 353–366 (2015)CrossRefGoogle Scholar
  2. 2.
    Chandra, R., Yadav, S., Yadav, S.: Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 98, 134–145 (2017)CrossRefGoogle Scholar
  3. 3.
    Wyszkowski, M., Radziemska, M.: Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. J. Toxicol. Environ. Health A 73, 1274–1282 (2010)CrossRefGoogle Scholar
  4. 4.
    Koda, E., Sieczka, A., Osiński, P.: Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 8, 1253 (2016)CrossRefGoogle Scholar
  5. 5.
    Vaverková, M.D., Adamcová, D., Radziemska, M., Voběrková, S., Mazur, Z., Zloch, J.: Assessment and evaluation of heavy metals removal from landfill leachate by Pleurotus ostreatus. Waste Biomass Valori. (2017). doi: 10.1007/s12649-017-001 Google Scholar
  6. 6.
    Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A., Osiński, P.: Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water. 8, 470 (2016)CrossRefGoogle Scholar
  7. 7.
    Baun, D.L., Christensen, T.H.: Speciation of heavy metals in landfill leachate: a review. Waste Manag. Res. 22, 3–23 (2004)CrossRefGoogle Scholar
  8. 8.
    Adamcová, D., Radziemska, M., Ridošková, A., Bartoň, S., Pelcová, P., Elbl, J., Kynický, J., Brtnický, M., Vaverková, M.D.: Environmental assessment of the effects of a municipal landfill on the content and distribution of heavy metals in Tanacetum vulgare L. Chemosphere 185, 1011–1018 (2017)CrossRefGoogle Scholar
  9. 9.
    Benskin, J.P., Li, B., Ikonomou, M.G., Grace, J.R., Li, L.Y.: Per- and polyfluoroalkyl substances in landfill leachate: patterns, time trends, and sources. Environ. Sci. Technol. 46, 11532–11540 (2012)CrossRefGoogle Scholar
  10. 10.
    Benskin, J.P., Ikonomou, M.G., Woudneh, M.B., Cosgrove, J.R.: Rapid characterization of perfluoroalkyl carboxylate, sulfonate, and sulfonamide isomers by high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1247, 165–170 (2012)CrossRefGoogle Scholar
  11. 11.
    Yan, H., Cousins, I.T., Zhang, C., Zhou, Q.: Perfluoroalkyl acids in municipal landfill leachates from China: occurrence, fate during leachate treatment and potential impact on groundwater. Sci. Total Environ. 524–525, 23–31 (2015)CrossRefGoogle Scholar
  12. 12.
    Fuertes, I., Gómez-Lavín, S., Elizalde, M.P., Urtiaga, A.: Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates. Chemosphere. 168, 399–407 (2017)CrossRefGoogle Scholar
  13. 13.
    EPA: A citizen’s guide to phytoremediation. EPA 542-F-98-011. Technology Innovation Office, US Environmental Protection Agency, Dallas (1998)Google Scholar
  14. 14.
    Radziemska, M., Gusiatin, Z.M., Bilgin, A.: Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecol. Eng. 102, 490–500 (2017)CrossRefGoogle Scholar
  15. 15.
    Pandey, V.C., Bajpai, O., Singh, N.: Energy crops in sustainable phytoremediation. Renew. Sust. Energ. Rev. 54, 58–73 (2016)CrossRefGoogle Scholar
  16. 16.
    Linger, P., Ostwald, A., Haensler, J.: Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol. Plant. 49, 567–576 (2005)CrossRefGoogle Scholar
  17. 17.
    Blaylock, M.J., Salt, D.E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B.D., Raskin, I.: Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860–865 (1997)CrossRefGoogle Scholar
  18. 18.
    Kos, B., Grčman, H., Leštan, D.: Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ. 49, 548–553 (2003)CrossRefGoogle Scholar
  19. 19.
    Wu, L.H., Luo, Y.M., Xing, X.R., Christie, P.: EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric. Ecosyst. Environ. 102, 307–318 (2004)CrossRefGoogle Scholar
  20. 20.
    Hajiboland, R.: An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ. 51, 156–164 (2005)CrossRefGoogle Scholar
  21. 21.
    Li, H., Wang, Q., Cui, Y., Dong, Y., Christie, P.: Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil-a preliminary study. Sci. Total Environ. 339, 179–187 (2005)CrossRefGoogle Scholar
  22. 22.
    Grispen, V.M.J., Nelissen, H.J.M., Verkleij, J.A.C.: Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ. Pollut. 144, 77–83 (2006)CrossRefGoogle Scholar
  23. 23.
    Komárek, M., Tlustoš, P., Száková, J., Chrastný, J., Ettler, V.: The use of maize and poplar in chelant enhanced phytoextraction of lead from contaminated agricultural soil. Chemosphere. 67, 640–651 (2007)CrossRefGoogle Scholar
  24. 24.
    Neugschwandtner, R.W., Tlustoš, P., Komárek, M., Száková, J.: Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144, 446–454 (2008)CrossRefGoogle Scholar
  25. 25.
    Salentijn, E.M.J., Zhang, Q., Amaducci, S., Yang, M., Trindade, L.M.: New developments in fiber hemp (Cannabis sativa L.) breeding. Ind. Crops Prod. 68, 32–41 (2014)CrossRefGoogle Scholar
  26. 26.
    Chaohua, Ch., Gonggu, Z., Lining, Z., Chunsheng, G., Qing, T., Jianhua, Ch., Xinbo, G., Dingxiang, P., Jianguang, S.: A rapid shoot regeneration protocol from the cotyledons of hemp (Cannabis sativa L.). Ind. Crops and Prod. 83, 61–65 (2016)CrossRefGoogle Scholar
  27. 27.
    Shi, G., Liu, C., Cui, M., Ma, Y., Cai, Q.: Cadmium tolerance and bioaccumulation of 18 hemp accessions. Appl. Biochem. Biotechnol. 168, 163–173 (2012)CrossRefGoogle Scholar
  28. 28.
    Slusarkiewicz-Jarzina, A., Ponitka, A., Kaczmarek, Z.: Influence of cultivar, explant source and plant growth regulator on callus induction and plant regeneration of Cannabis sativa L. Acta Biol. Craco. Series Bot. 47, 145–151 (2005)Google Scholar
  29. 29.
    Papadopoulou, E., Bikiaris, D., Chrysafis, K., Wladyka-Przybylak, M., Wesolek, D., Mankowski, J., Kolodziej, J., Baraniecki, P., Bujnowicz, K., Gronberg, V.: Value-added industrial products from bast fiber crops. Ind. Crops Prod. 68, 116–125 (2015)CrossRefGoogle Scholar
  30. 30.
    Adamcová, D., Vaverková, M.D.: Does composting of biodegradable municipal solid waste on the landfill body make sense? J. Ecol. Eng. 17, 30–37 (2016)CrossRefGoogle Scholar
  31. 31.
    Voběrková, S., Vaverková, M.D., Burešová, A., Adamcová, D., Vršanská, M., Kynický, J., Brtnický, M., Adam, V.: Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manag. 61, 157–164 (2017)CrossRefGoogle Scholar
  32. 32.
    Adamcová, D., Vaverková, M.D., Břoušková, E.: The toxicity of two types of sewage sludge form wastewater treatment plant for plants. J. Ecol. Eng. 17, 33–37 (2016)CrossRefGoogle Scholar
  33. 33.
    Hou, C., Lu, G., Zhao, L., Yin, P., Zhu, L.: Estrogenicity assessment of membrane concentrates from landfill leachate treated by the UV-Fenton process using a human breast carcinoma cell line. Chemosphere. 180, 192–200 (2017)CrossRefGoogle Scholar
  34. 34.
    Zhang, Q.Q., Tian, B.H., Zhang, X., Ghulam, A., Fang, C.R., He, R.: Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag. 33(11), 2277–2286 (2013)CrossRefGoogle Scholar
  35. 35.
    Slack, R.J., Gronow, J.R., Voulvoulis, N.: Household hazardous waste in municipal landfills: contaminants in leachate. Sci. Total Environ. 337, 119–137 (2005)CrossRefGoogle Scholar
  36. 36.
    Matejczyk, M., Płaza, G.A., Nałęcz-Jawecki, G., Ulfig, K., Markowska-Szczupak, A.: Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82(7), 1017–1023 (2011)CrossRefGoogle Scholar
  37. 37.
    Ghosh, P., Thakur, I.S., Kaushik, A.: Bioassays for toxicological risk assessment of landfill leachate: a review. Ecotoxicol. Environ. Saf. 141, 259–270 (2017)CrossRefGoogle Scholar
  38. 38.
    USEPA: Ecological effects test guidelines: seed germination/root elongation toxicity test. US Environmental Protection Agency, Environmental Research Laboratory, Washington (1996)Google Scholar
  39. 39.
    Novak, L.J., Holtze, K.E.: Overview of toxicity reduction and identification evaluations for use with small-scale tests. In: Blaise, C., Férard, J.F. (eds.) Small-scale freshwater toxicity investigations, pp. 169–213. Springer, Dordrecht (2005)CrossRefGoogle Scholar
  40. 40.
    Bakare, A.A., Mosuro, A.A., Osibanjo, O.: Effect of stimulated leachate on chromosomes and mitosis in roots of Allium cepa L. J. Environ. Biol. 21, 251–260 (2000)Google Scholar
  41. 41.
    Mor, S., Kaur, K., Khaiwal, R.: Growth behavior studies of bread wheat plant exposed to municipal landfill leachate. J. Environ. Biol. 34, 1083–1087 (2013)Google Scholar
  42. 42.
    Suliasih, B.A., Othman, M.S., Heng, L.Y., Salmijah, S.: Toxicity identification evaluation of landfill leachate taking a multispecies approach. Waste Manag. Environ. V. 140, 311–322 (2010)Google Scholar
  43. 43.
    Sang, N., Li, G.K.: Genotoxicity of municipal landfill leachate on root tips of Vicia faba. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 560(2), 159–165 (2004)CrossRefGoogle Scholar
  44. 44.
    Sang, N., Han, M., Li, G.K.: Landfill leachate affects metabolic responses of Zea mays L. seedings. Waste Manag. 30(5), 856–862 (2010)CrossRefGoogle Scholar
  45. 45.
    Srivastava, A.K., Kumar, R.R., Singh, A. K.: Cell cycle stage specific application of municipal landfill leachates to assess the genotoxicity in root meristem cells of barley (Hordeum vulgare). Environ. Sci. Pollut. Res. 21(24), 13979–13986 (2014)CrossRefGoogle Scholar
  46. 46.
    Žaltauskaitė, J., Čypaitė, A.: Assessment of landfill leachate toxicity using higher plants. Environ. Res. Eng. Manag. 46(4), 42–47 (2008)Google Scholar
  47. 47.
    Olivero-Verbel, J., Padilla-Bottet, C., De la Rosa, O.: Relationships between physicochemical parameters and the toxicity of leachates from a municipal solid waste landfill. Ecotoxicol. Environ. Saf. 70, 294–299 (2008)CrossRefGoogle Scholar
  48. 48.
    Pablos, M.V., Martini, F., Fernandez, C., Babin, M.M., Herraez, I., Miranda, J., Martinez, J., Carbonell, G., San-Segundo, L., Garcia-Hortiguela, P., Tarazona, J.V.: Correlation between physicochemical and ecotoxicological approaches to estimate landfill leachates toxicity. Waste Manag. 31, 1841–1847 (2011)CrossRefGoogle Scholar
  49. 49.
    Baker, A., Brooks, R.: Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery. 1, 81–126 (1989)Google Scholar
  50. 50.
    Ahmad, R., Tehsin, Z., Tanvir Malik, S.T., Asad, S.A., Shahzad, M., Bilal, M., Shah, M.M., Khan, S.A.: Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean-Soil Air Water. 44, 195–201 (2016)CrossRefGoogle Scholar
  51. 51.
    Adler, A., Karacic, A., Weih, M.: Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant Soil. 305, 189–206 (2008)CrossRefGoogle Scholar
  52. 52.
    Sinha, S., Gupta, A.K., Bhatt, K., Pandey, K., Rai, U.N., Singh, K.P.: Distribution of metals in the edible plants grown at Jajmau, Kanpur (India) receiving treated tannery wastewater: relation with physico-chemical properties of the soil. Environ. Monit. Assess. 115, 1–22 (2006)CrossRefGoogle Scholar
  53. 53.
    Barbosa, B., Costa, J., Fernando, A.L., Papazoglou, E.G.: Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Ind. Crop. Prod. 68, 17–23 (2015)CrossRefGoogle Scholar
  54. 54.
    Davison, L., Pont, D., Bolton, K., Headley, T.: Dealing with nitrogen in subtropical Australia: seven case studies in the diffusion of ecotechnological innovation. Ecol. Eng. 28, 213–223 (2006)CrossRefGoogle Scholar
  55. 55.
    Nivala, J., Hoos, M.B., Cross, C., Wallace, S., Parkin, G.: Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci. Total Environ. 380, 19–27 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Magdalena Daria Vaverková
    • 1
    Email author
  • Jan Zloch
    • 1
  • Dana Adamcová
    • 1
  • Maja Radziemska
    • 2
  • Tomáš Vyhnánek
    • 3
  • Václav Trojan
    • 3
  • Jan Winkler
    • 3
  • Biljana Đorđević
    • 3
  • Jakub Elbl
    • 4
  • Martin Brtnický
    • 4
  1. 1.Department of Applied and Landscape Ecology, Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic
  2. 2.Department of Environmental Improvement, Faculty of Civil and Environmental EngineeringWarsaw University of Life SciencesWarsawPoland
  3. 3.Department of Plant Biology, Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic
  4. 4.Department of Geology and Pedology, Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic

Personalised recommendations