Waste and Biomass Valorization

, Volume 9, Issue 3, pp 503–511 | Cite as

Assessment and Evaluation of Heavy Metals Removal from Landfill Leachate by Pleurotus ostreatus

  • Magdalena Daria VaverkováEmail author
  • Dana Adamcová
  • Maja Radziemska
  • Stanislava Voběrková
  • Zbigniew Mazur
  • Jan Zloch
Original Paper


Landfilling is a common waste disposal method worldwide, especially for municipal solid waste. Landfill leachate is a potentially polluting liquid, which may cause toxic effects on the water near landfill sites. The present study explores the potential of Pleurotus ostreatus (a macro-fungus) to remove heavy metals from landfill leachate. The objective was also to study the change of leachate toxicity before and after P. ostreatus cultivation using Sinapis alba L. growth inhibition test. Based on the results, it can be concluded that the P. ostreatus is efficient in landfill leachate water removal of heavy metals. In all the samples the enrichment coefficient values for tested heavy metal were higher than 1.0, confirming a high level of accumulation. P. ostreatus has a good potential in real applications to remove toxic heavy metals from landfill leachate.

Graphical Abstract


Waste treatment Landfill leachate Heavy metals Pleurotus ostreatus Bioconcentration Growth inhibition test 



This study was supported by the IGA—Internal Grant Agency Faculty of AgriSciences MENDELU No. IP 2017/021.


  1. 1.
    Wong, M.H., Chan, Y.S.G., Zhang, C., Wang-Wai, C.: Comparison of pioneer and native woodland species growing on top of an engineered landfill, Hong Kong: restoration programme. Land Degrad. Dev. 27, 500–510 (2015)CrossRefGoogle Scholar
  2. 2.
    Kumari, M., Ghosh, P., Thakur, I.S.: Landfill leachate treatment using bacto-algal co-culture: an integrated approach using chemical analyses and toxicological assessment. Ecotoxicol. Environ. Saf. 128, 44–51 (2016)CrossRefGoogle Scholar
  3. 3.
    Koda, E., Pachuta, K., Osiński, P.: Potential of plants application in the initial stage of landfill reclamation process. Pol. J. Environ. Stud. 22, 1731–1739 (2013)Google Scholar
  4. 4.
    Del Moro, G., Barca, E., Cassano, D., Di Iaconi, C., Mascolo, G., Brunetti, G: Landfill wall revegetation combined with leachate recirculation: a convenient procedure for management of closed landfills. Environ. Sci. Pollut. Res. 21, 9366–9375 (2014)CrossRefGoogle Scholar
  5. 5.
    Koda, E., Sieczka, A., Osiński, P.: Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 8, 1253 (2016)CrossRefGoogle Scholar
  6. 6.
    Wong, J.T.F., Chen, X.W., Mo, W.Y., Man, Y.B., Ng, C.W.W, Wong, M.H.: Restoration of plant and animal communities in a sanitary landfill: a 10-year case study in Hong Kong. Land Degrad. Dev. 27, 490–499 (2015)CrossRefGoogle Scholar
  7. 7.
    Remmas, N., Roukouni, C., Ntougias, S.: Bacterial community structure and prevalence of Pusillimonas-like bacteria in aged landfill leachate. Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8416-8 (2017)Google Scholar
  8. 8.
    Vaverková, M.D., Adamcová, D.: Long-term temperature monitoring of a municipal solid waste landfill. Pol. J. Environ. Stud. 24, 1373–1378 (2015)CrossRefGoogle Scholar
  9. 9.
    Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A., Osiński, P.: Impact of the municipal solid waste Łubna Landfill on environmental pollution by heavy metals. Water 8, 470 (2016)CrossRefGoogle Scholar
  10. 10.
    Christensen, T., Kjeldsen, P., Bjerg, P., Jensen, D., Christensen, J., Baun, A., Albrechtsen, H.J., Heron, G.: Biogeochemistry of landfill leachate plumes. Appl. Geochem. 16, 659–718 (2001)CrossRefGoogle Scholar
  11. 11.
    Ribé, V., Nehrenheim, E., Odlare, M., Gustavsson, L., Berglind, R., Forsberg, Å: Ecotoxicological assessment and evaluation of a pine bark biosorbent treatment of five landfill leachates. Waste Manag. 32, 1886–1894 (2012)CrossRefGoogle Scholar
  12. 12.
    Kjeldsen, P., Barlaz, M.A., Rooker, A.P., Baun, A., Ledin, A., Christensen, T.H.: Present and long-term composition of MSW landfill leachate: a review. Crit. Rev. Environ. Sci. Technol. 32, 297–336 (2002)CrossRefGoogle Scholar
  13. 13.
    Nriagu, J.O.: Human influence on the global cycling of the metals. In: Farmer J.G. (ed.) Heavy Metals in the Environment, vol. 1, pp. 1–5. CEP consultants Ltd.: Edinburgh (1991)Google Scholar
  14. 14.
    Gusiatin, Z.M.: Use of sewage sludge-compost in remediation of soil contaminated with Cu, Cd and Zn. Environ. Eng. 4, 213–223 (2013)Google Scholar
  15. 15.
    Mahmoud, E., El-Kader, N.A.: Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degrad. Dev. 26, 819–824 (2014)CrossRefGoogle Scholar
  16. 16.
    Sas, W., Głuchowski, A., Radziemska, M., Dzięcioł, J., Szymański, A.: Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials 8, 4857–4875 (2015)CrossRefGoogle Scholar
  17. 17.
    Kelly, J., Thornton, I., Simpson, P.R.: Urban geochemistry: a study of influence of anthropogenic activity on heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl. Geochem. 11, 363–370 (1996)CrossRefGoogle Scholar
  18. 18.
    Mazur, Z., Radziemska, M., Maczuga, O., Makuch, A.: Heavy metal concentrations in soil and moss (Pleurozium schreberi) near railroad lines in Olsztyn (Poland). Fres. Environ. Bull. 22, 955–961 (2013)Google Scholar
  19. 19.
    Radziemska, M., Mazur, Z., Jeznach, J.: Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chem. Eng. Trans. 32, 301–306 (2013)Google Scholar
  20. 20.
    Roy, M., McDonald, L.M.: Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad. Dev. 26, 785–792 (2015)CrossRefGoogle Scholar
  21. 21.
    Jiang, Y., Lei, M., Duan, L., Longhurst, P.: Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83, 328–339 (2015)CrossRefGoogle Scholar
  22. 22.
    Dhir, D., Srivastava, S.: Disposal of metal treated Salvinia biomass in soil and its effect on growth and photosynthetic efficiency of wheat. Int. J. Phytoremed. 14, 24–34 (2012)CrossRefGoogle Scholar
  23. 23.
    Ghosh, M., Singh, S.P.: A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 3, 1–18 (2005)CrossRefGoogle Scholar
  24. 24.
    Kamnev, A.A., van der Lelie, D.: Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep. 20, 239–258 (2000)CrossRefGoogle Scholar
  25. 25.
    Van Ginneken, L., Meers, E., Guisson, R., Ruttens, A., Elst, K., Tack, M.G., Vangronsveld, J., Diels, L., Dejonghe, W.: Phytoremediation for heavy metal contaminated soils combined with bioenergy production. J. Environ. Eng. Landsc. Manag. 15, 227–236 (2007)Google Scholar
  26. 26.
    Gomes, H.I.: Phytoremediation for bioenergy: challenges and opportunities. Environ. Technol. Rev. 1, 59–66 (2012)CrossRefGoogle Scholar
  27. 27.
    Koda, E., Miszkowska, A., Sieczka, A.: Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Appl. Sci. 7, 2–22 (2017)Google Scholar
  28. 28.
    Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., Weber, J.V.: Landfill leachate treatment methods: a review. Environ. Chem. Lett. 4, 51–61 (2006)CrossRefGoogle Scholar
  29. 29.
    Del Moro, Prieto-Rodríguez, L., M., De Sanctis, C., Di Iaconi, S., Malato, S., Mascolo, G: Landfill leachate treatment: Comparison of standalone electrochemical degradation and combined with a novel biofilter. Chem. Eng. J. 288, 87–98 (2016)CrossRefGoogle Scholar
  30. 30.
    Di Iaconi, C., De Sanctis, M., Rossetti, S., Mancini, A: Bio-chemical treatment of medium-age sanitary landfill leachates in a high synergy system. Process Biochem. 46, 2322–2329 (2011)CrossRefGoogle Scholar
  31. 31.
    Volesky, B.: Biosorption of heavy metals. CRC Press, Boston (1990)Google Scholar
  32. 32.
    Javaid, A., Bajwa, R., Shafique, U., Anwar, J.: Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioener. 35, 1675–1682 (2011)CrossRefGoogle Scholar
  33. 33.
    Bayramoglu, G., Celik, G., Yalcin, E., Yilmaz, M., Arica, M.Y.: Modification of surface properties of Lentinus sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. J. Hazard. Mater. 119, 219–229 (2005)CrossRefGoogle Scholar
  34. 34.
    Akar, T., Cabuk, A., Tunali, S., Yama, M.: Biosorption potential of the macrofungus Ganoderma carnosum for removal of lead (II) ions from aqueous solutions. J. Environ. Sci. Health A 41, 2587–2606 (2006)CrossRefGoogle Scholar
  35. 35.
    Jayakumar, T., Ramesh, E., Geraldine, P.: Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem. Toxicol. 44, 1989–1996 (2006)CrossRefGoogle Scholar
  36. 36.
    Jose, N., Janardhanan, K.K.: Antioxidant and antitumor activity of Pleurotus florida. Curr. Sci. 79, 941–943 (2000)Google Scholar
  37. 37.
    Arora, D.K., Mukerji, K.G., Marth, E.H.: Hand Book of Applied Mycology. Marcel Dekker Inc., New York (1991)Google Scholar
  38. 38.
    Baldrian, B.: Interactions of heavy metals with white-rot fungi. Enzyme Microb. Tech. 32, 78–91 (2003)CrossRefGoogle Scholar
  39. 39.
    Byss, M., Elhottová, D., Tlíska, J., Baldrian, P.: Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Chemosphere 73, 1518–1523 (2008)CrossRefGoogle Scholar
  40. 40.
    Kapoor, A, Viraraghavan, T.: Fungal biosorption- an alternative treatment option for heavy metal bearing wastewater: a review. Bioresour. Techol. 53, 195–206 (1995)Google Scholar
  41. 41.
    Arbanah, M., Najwa, M.R.M, Halim, K.H.U.: Biosorption of Cr (III), Fe(II), Cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int. J. Biotechnol. Wellness Ind. 1, 152–162 (2012)Google Scholar
  42. 42.
    Voběrková, S., Vaverková, M.D., Burešová, A., Adamcová, D., Vršanská, M., Kynický, J., Brtnický, M., Adam, V.: Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Manage. 61, 157–164 (2017)CrossRefGoogle Scholar
  43. 43.
    Da Silva, M.C.S., Naozuka, J., da Luz, J.M.R., de Assunção, L. S., Oliveira, P.V., Vanetti, M.C.D., Bazzolli, D.M.S., Kasuya, M.C.M: Enrichment of Pleurotus ostreatus mushrooms with selenium in coffee husks. Food Chem. 131, 558–563 (2012)CrossRefGoogle Scholar
  44. 44.
    Ribé, V., Nehrenheim, E., Odlare, M., Waara, S.: Leaching of contaminants from untreated pine bark in a batch study: chemical analysis and ecotoxicological evaluation. J. Hazard. Mater. 163, 1096–1100 (2009)CrossRefGoogle Scholar
  45. 45.
    Fargašová, A.: Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba. Plant Soil Environ. 50, 33–38 (2004)CrossRefGoogle Scholar
  46. 46.
    Oleszczuk, P.: Toxicity of Light soil fertilized by sewage sludge or compost in relation to PAHs content. Water Air Soil Pollut. 210, 347–356 (2009)CrossRefGoogle Scholar
  47. 47.
    Jośko, I., Oleszczuk, P.: The influence of ZnO and TiO2 nanoparticles on the toxicity of sewage sludges. Environ. Sci. Process Impacts 15, 296–306 (2013)CrossRefGoogle Scholar
  48. 48.
    Adamcová, D., Vaverková, M.D.: Does composting of biodegradable municipal solid waste on the landfill body make sense? J. Ecol. Eng. 17, 30–37 (2016)CrossRefGoogle Scholar
  49. 49.
    Chao, W., Xiao-Chen, L., Li-Min, Z., Pei-Fang, W., Zhi-Yong, G.: Pb, Cu, Zn and Ni concentrations in vegetables in relation to their extractable fractions in soils in suburban areas of Nanjing, China. Pol. J. Environ. Stud. 2, 199–207 (2007)Google Scholar
  50. 50.
    Kachenko, A.G., Singh, B.: Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut. 169, 101–123 (2006)CrossRefGoogle Scholar
  51. 51.
    Vaverková, M., Adamcová, D.: Heavy metals uptake by selected plant species in the landfill area of Štěpánovice, Czech Republic. Pol. J. Environ. Stud. 23, 2265–2269 (2014)Google Scholar
  52. 52.
    Price, M.S., Classen, J.J., Payne, G.A.: Aspergillus niger absorbs copper and zinc from swine wastewater. Bioresour. Technol. 77, 41–49 (2001)CrossRefGoogle Scholar
  53. 53.
    Zhang, S., Zhang, X., Chang, Ch., Yuan, Z., Wang, T., Zhao, Y., Yang, X., Zhang, Y., La, G., Wu, K., Zhang, Z., Li, X.: Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere 150, 33–39 (2016)CrossRefGoogle Scholar
  54. 54.
    Falandysz, J., Kojta, A. K, Jarzynska, G., Drewnowska, M., Dryzalowska, A., Wydmanska, D., Kowalewska, I., Wacko, A., Szlosowska, M., Kannan, K., Szefer, P.: Mercury in bay bolete (Xerocomus badius): bioconcentration by fungus and assessment of element intake by humans eating fruiting bodies. Food Addit. Contam. 29, 951–961 (2012)CrossRefGoogle Scholar
  55. 55.
    Gadd, G.M.: Interactions of fungi with toxic metals. New Phytol. 124, 25–60 (1993)CrossRefGoogle Scholar
  56. 56.
    Gabriel, J., Vosahlo, J., Baldrian, P.: Biosorption of cadmium to mycelial pellets of wood-rotting fungi. Biotechnol. Tech. 10, 345–348 (1996)CrossRefGoogle Scholar
  57. 57.
    Damodaran, D., Shetty, K.V., Mohan, R.B.: Uptake of certain heavy metals from contaminated soil by mushroom-Galerina vittiformis. Ecotoxicol. Environ. Saf. 104, 414–422 (2014)CrossRefGoogle Scholar
  58. 58.
    Malayeri, B.E., Chehregani, A., Yousefi, N., Lorestani, B.: Identification of the hyper accumulator plants in copper and iron mine in Iran. Pak. J. Biol. Sci. 11, 490–492 (2008)CrossRefGoogle Scholar
  59. 59.
    Kisic, I., Jurisic, A., Mesic, H., Mesic, S.: Heavy metals uptake by aerial biomass and grain of soybean. In: Tzi-Bun N.G. (ed.) Soybean—Biochemistry, Chemistry and Physiology. InTech, Rijeka (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Applied and Landscape Ecology, Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic
  2. 2.Department of Environmental Improvement, Faculty of Civil and Environmental EngineeringWarsaw University of Life Sciences - SGGWWarsawPoland
  3. 3.Department of Chemistry and Biochemistry, Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic
  4. 4.Department of Environmental Chemistry, Faculty of Environmental Management and AgricultureUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations