Advertisement

Waste and Biomass Valorization

, Volume 8, Issue 7, pp 2313–2327 | Cite as

Biomass Value Chain Design: A Case Study of the Upper Rhine Region

  • A. Rudi
  • A.-K. Müller
  • M. Fröhling
  • F. Schultmann
Original Paper

Abstract

Bioenergy is expected to play an important role in the future mix of energy supply in bridging the gap between diminishing fossil fuels and increasing global energy needs, as it is in contrast to other renewable energies, capable of providing base-load capacities. Valorization of biomass as a source of energy is challenging due to the large variety of biomass feedstocks and conversion technologies. To master these challenges and to establish a successful bioenergy market, the development of optimized biomass value chains is essential. We present a case study application of a biomass value chain design for the tri-national Upper Rhine Region. A mathematical model is formulated, which uses existing potentials in order to optimize the biomass value chain in terms of multiple feedstocks, technologies, and outputs. Potential biomass conversion plants are identified or existing ones are upgraded while integrating transportation, location, technology, and capacity planning. The model is implemented and applied in a case study for the Upper Rhine Region. The resulting insights provide for a techno-economic assessment of biomass value chains and the identification of potential biomass pathways. In this way, support is provided in strategic decision making, while taking into account the type of biomass feedstock as well as the conversion technology, and in tactical planning by allocating feedstock to conversion facility locations.

Graphical abstract

Keywords

Biomass value chain Techno-economic assessment Location planning Mathematical modeling Multiple biomass feedstocks 

Notes

Acknowledgements

The present work was carried out in the context of the research project “OUI Biomasse—Innovations for a Sustainable Biomass Utilization in the Upper Rhine Region” financed by the European Regional Development Fund (ERDF) in collaboration with the cooperation program INTERREG “Oberrhein—Rhin Supérieur” and other national co-funding institutions.

References

  1. 1.
    Dieckhoff, P., El-Chichakli, B., Fund, C.: Bioeconomy policy (part II)—synopsis of national strategies around the world. A report from the German Bioeconomy Council. Berlin (2015)Google Scholar
  2. 2.
    AEBIOM: Annual report of the European Biomass Association (2015) http://www.aebiom.org/library/annual-reports/
  3. 3.
    Bauen, A., Berndes, G., Junginger, M., Londo, M., Vuille, F.: Bioenergy—a sustainable and reliable energy source. A review of status and prospects. International Energy Agency (2009)Google Scholar
  4. 4.
    Edenhofer, O., Pichs-Adruga, R., Sokona, Y., Minx, J.C., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von Stechow, C., Zwickel, T.: Climate change 2014—mitigation of climate change: working group iii contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge (2014)Google Scholar
  5. 5.
    FAO: Bioenergy and food security. The BEFS analytical framework. The Bioenergy and Food Security Project Food and Agriculture Organization of the United Nations, Rome (2010)Google Scholar
  6. 6.
    EC: Where next for the European bioeconomy? The latest thinking from the European Bioeconomy Panel and the Standing Committee on Agricultural Research Strategic Working Group (2014)Google Scholar
  7. 7.
    OECD: Bioheat, biopower and biogas—developments and applications for agriculture. Working Party on Agricultural Policies and Markets (2010)Google Scholar
  8. 8.
    IEA: Bioenergy—annual report 2015. International Energy Agency (2015)Google Scholar
  9. 9.
    EUBIA: About biomass. European Biomass Industry Association. http://www.eubia.org/index.php/about-biomass Cited 14 Jun 2016
  10. 10.
    Chartier, Ph., Beenackers, A.A.C.M., Grassi, G.: Biomass for energy; environment, agriculture and industry. Proceedings of the 8th European Biomass Conference, Vienna (1994)Google Scholar
  11. 11.
    De Meyer, A., Cattrysse, D., Rasinmäki, J., Van Orshoven, J.: Methods to optimise the design and management of biomass-for-bioenergy supply chains—a review. Renew Sust Energ Rev. 31, 657–670 (2014)CrossRefGoogle Scholar
  12. 12.
    Yue, D., You, F., Snyder, S.W.: Biomass-to-bioenergy and biofuel supply chain optimization—overview, key issues and challenges. Comput. Chem Eng. 66, 36–56 (2014)Google Scholar
  13. 13.
    Ekşioğlu, S.D., Acharya, A., Leightley, L.E., Arora, S.: Analyzing the design and management of biomass-to-biorefinery supply chain. Comput Ind Eng. 57, 1342–1352 (2009)CrossRefGoogle Scholar
  14. 14.
    Fröhling, M., Schweinle, J., Meyer, J.-C., Schultmann, F.: Logistics of renewable raw materials. In: Hirth, T., Ulber, R., Sell, D. (eds.): Renewable raw materials—new feedstocks for the chemical industry. Wiley, Weinheim, 49–94 (2011)Google Scholar
  15. 15.
    German Federal Government (ed.): Biorefineries roadmap, Berlin (2012)Google Scholar
  16. 16.
    Gabrielle, B., Bamière, L., Caldes, N., De Cara, S., Decocq, G., Ferchaud, F., Loycef, C., Pelzer, E., Perez, Y., Wohlfahrt, J., Richard, G: Paving the way for sustainable bioenergy in Europe—technological options and research avenues for large-scale biomass feed stock supply. Renew Sust Energ Rev. 33, 11–25 (2014)CrossRefGoogle Scholar
  17. 17.
    Sharma, B., Ingalls, R.G., Jones, C.L., Khanchi, A.: Biomass supply chain design and analysis—basis, overview, modeling, challenges, and future. Renew Sust Energ Rev. 24, 608–627 (2013)CrossRefGoogle Scholar
  18. 18.
    Ba, H.B., Prins, C., Prodhon, C.: Models for optimization and performance evaluation of biomass supply chains—an operations research perspective. Renew Energ 87, 977–989 (2016)CrossRefGoogle Scholar
  19. 19.
    Batidzirai, B.: Design of sustainable biomass value chains: optimizing the supply logistics and use of biomass over time, Dissertation. University of Utrecht, The Netherlands (2013)Google Scholar
  20. 20.
    Garcia, D.J., You, F.: Supply chain design and optimization: challenges and opportunities. Comput. Chem Eng. 81, 153–170 (2015)CrossRefGoogle Scholar
  21. 21.
    Hong, B.H., How, B.S., Lam, H.L.: Overview of sustainable biomass supply chain: from concept to modelling. Clean Techn Environ Policy (2016) doi: 10.1007/s10098-016-1155-6 Google Scholar
  22. 22.
    Yadav, Y.S, Yadav, Y.K.: Biomass Supply Chain Management: Perspectives and Challenges. In: Kumar S., et al. (eds.): Proceedings of the First International Conference on Recent Advances in Bioenergy Research, Springer Proceedings in Energy (2016) doi: 10.1007/978-81-322-2773-1_20 Google Scholar
  23. 23.
    Shastri, Y.N., Rodriguez, F., Hansen A.C., Ting, K.C.: Impact of distributed storage and pre-processing on Miscanthus production and provision systems. Biofuels, Bioprod. Bioref. 6, 21–31 (2012)CrossRefGoogle Scholar
  24. 24.
    Kaltschmitt, M., Hartmann, H., Hofbauer, H.: Energie aus Biomasse: Grundlagen, Techniken und Verfahren. Springer, Heidelberg (2009)Google Scholar
  25. 25.
    Wiese, A.: Biomass combustion for electricity generation. In: Kaltschmitt, M., et al. (eds.): Renewable Energy Systems. Springer, Heidelberg (2013)Google Scholar
  26. 26.
    Fiedler, P., Lange, M., Schultze, M.: Supply logistics for the industrialized use of biomass: Principles and planning approach. International Symposium on Logistics and Industrial Informatics. Wildau, Germany (2007)Google Scholar
  27. 27.
    Kurian, J.K., Nair, G.R., Hussain, A., Raghavan, G.S.V: Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries—a comprehensive review. Renew Sust Energ Rev. 25, 205–219 (2013)CrossRefGoogle Scholar
  28. 28.
    Mafakheri, F., Nasiri, F.: Modeling of biomass-to-energy supply chain operations: applications, challenges and research directions. Energ. Policy. 67, 116–126 (2014)CrossRefGoogle Scholar
  29. 29.
    Rentizelas, A.A., Tatsiopoulos, I.P., Tolis, A.: An optimization model for multi-biomass tri-generation energy supply. Biomass Bioenerg 33, 223–233 (2009)CrossRefGoogle Scholar
  30. 30.
    Zhang, F., Johnson, D., Johnson, M., Watkins, D., Foese, R., Wang, J.: Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain. Renew Energ 85, 740–748 (2016)CrossRefGoogle Scholar
  31. 31.
    Kerdoncuff, P.: Modellierung und Bewertung von Prozessketten zur Herstellung von Biokraftstoffen der zweiten Generation. KIT Dissertation, Karlsruhe, Germany (2009)Google Scholar
  32. 32.
    Schwaderer, F.: Integrierte Standort-, Kapazitäts- und Technologieplanung von Wertschöpfungsnetzwerken zur stofflichen und energetischen Biomassenutzung. KIT Dissertation, Karlsruhe, Germany (2012)Google Scholar
  33. 33.
    Yue, D., You, F.: Functional-unit-based life cycle optimization of sustainable biomass-to-electricity supply chain with economic and environmental tradeoffs. Comput Aided. Chem Eng. 37, 651–656 (2014)CrossRefGoogle Scholar
  34. 34.
    Tittmann, P.W., Parker, N.C., Hart, Q.J., Jenkins, B.M.: A spatially explicit techno-economic model of bioenergy and biofuels production in California. J Trans. Georg. 18(6), 715–728 (2010)CrossRefGoogle Scholar
  35. 35.
    Zhu, X., Yao, Q.: Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks. Bioresource Technol. 102, 10936–10945 (2011)CrossRefGoogle Scholar
  36. 36.
    OUI Biomasse: Roadmap for sustainable biomass utilization in the Upper Rhine Region. Project report. KIT/DFIU, Germany (2015)Google Scholar
  37. 37.
    Bidart, C., McKenna, R., Fichtner, W.: Research reports & protocols of the oui biomasse research area 3. KIT/DFIU, Germany (2014–2015)Google Scholar
  38. 38.
    Oak Ridge National Laboratory: Biomass Energy Data Book: Edition 4 (2011)Google Scholar
  39. 39.
    Young, G.C.: Municipal solid waste to Energy conversion processes—economic, technical, and renewable comparisons. Wiley, New Jersey (2010)CrossRefGoogle Scholar
  40. 40.
    Deutsch-Französische-Schweizerische Oberrheinkonferenz: Oberrhein/Rhin Supérieur 2014. Zahlen und Fakten/Faits et chiffres. Kehl (2015)Google Scholar
  41. 41.
    Bing, X., Bloemhof, J.M., Ramos, T.R.R., Barbosa-Povoa, A.P., Wongd, C.Y., van der Vorst, J.G.A.J: Research challenges in municipal solid waste logistics management. Waste Manag. 48, 584–592 (2016)CrossRefGoogle Scholar
  42. 42.
    Kost, C., Mayer, J.N., Thomsen, J., Hartmann, N., Senkpiel, C., Phillips, S., Nold, S., Lude, S., Saad, N., Schlegl, S.: Levelized cost of electricity renewable energy technologies. Fraunhofer Institute for Solar Energy Systems, Freiburg (2013)Google Scholar
  43. 43.
    Kim, S., Dale, B.E.: All biomass is local: The cost, volume produced, and global warming impact of cellulosic biofuels depend strongly on logistics and local conditions. Biofuels Bioprod. Bioref. 10(2), 186–190 (2015)CrossRefGoogle Scholar
  44. 44.
    Šomplák, R., Pavlas, M., Kropáč, J., Putna, P., Procházka, V.: Logistic model-based tool for policy-making towards sustainable waste management. Clean Techn Environ Policy. 16(7), 1275–1286 (2014)CrossRefGoogle Scholar
  45. 45.
    Balaman, S.Y., Selim, H.: A decision model for cost effective design of biomass based green energy supply chains. Bioresour Technol. 191, 97–109 (2015)CrossRefGoogle Scholar
  46. 46.
    De La Rúa, C., Lechón, Y., Morandi, F., Østergård, H., Wohlfahrt, J., Perrin, A., Gabrielle, B., Bjørkvoll, T., Flatberg, T., Damman, S.: Socio-economic effects of biomass supply chain: case studies from Logist’EC project. 23rd European Biomass Conference and Exhibition, Vienna (2015)Google Scholar
  47. 47.
    Hombach, L.E., Cambero, C., Sowlati, T., Walther, G.: Optimal design of supply chains for second generation biofuels incorporating European biofuel regulations. J Clean Prod (2016) doi: 10.1016/j.jclepro.2016.05.107 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.French-German Institute for Environmental Research (DFIU)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Chair of Business Administration, esp. Resource ManagementTU Bergakademie FreibergFreibergGermany

Personalised recommendations