Skip to main content
Log in

Recycled Paper Sludge Microbial Community as a Potential Source of Cellulase and Xylanase Enzymes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Waste disposal from paper and pulp industry is of great environmental concern. Sludge from recycled paper mills favors colonization with different microbial species due to its chemical composition. In this environment, the microbiota can express enzymes that hydrolyze celluloses and hemicelluloses, such as cellulases, β-glucosidases, and xylanases. Understanding microbiota living in such disposal may give directions to what kind of enzymes or bioproducts may be possible to obtain from this microorganism and how to deal with the waste during the process. We have accessed microbial community associated with two steps in the recycled paper sludge generation by high-throughput DNA sequencing: fibrous residue, and wastewater sludge. Bacteroidetes, Proteobacteria and Firmicutes phyla represented more than 96% of the total. From the eukaryote perspective, Vorticella was the most frequent in fibrous residue samples while Acanthamoeba was the most common on wastewater sludge samples. Among the isolates cellulase activity was detectable only from fungi isolates. Half of the bacterial isolates presented xylanase activity, and most of them in high level of activity. Both a metabarcoding and culturing approaches are valuable tools for enzymatic screening in industrial waste disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Likon, M., Trebše, P.: Recent advances in paper mill sludge management. In: Show, K.-Y., Guo, X. (eds.) Industrial Waste, pp.73–90. InTech, Rijeka (2012)

    Google Scholar 

  2. Madrid, L.M., Díaz, J.C.Q.: Ethanol production from paper sludge using Kluyveromyces marxianus. Dyna 78, 185–191 (2011)

    Google Scholar 

  3. Dwiarti, L., Boonchird, C., Harashima, S., Park, E.Y.: Simultaneous saccharification and fermentation of paper sludge without pretreatment using cellulase from Acremonium cellulolyticus and thermotolerant Saccharomyces cerevisiae. Biomass Bioenerg. 42, 114–122 (2012)

    Article  Google Scholar 

  4. Lacour, P.: Pulp and Paper Markets in Europe—2003 Study. UNECE/FAO, Geneva (2005)

    Google Scholar 

  5. Bajpai, P.: Generation of Waste in Pulp and Paper Mills. In: Bajpai, P.. (ed.) Management of Pulp and Paper Mill Waste, pp. 9–17. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  6. Chen, H., Han, Q., Daniel, K., Venditti, R., Jameel, H.: Conversion of industrial paper sludge to ethanol: fractionation of sludge and its impact. Appl. Biochem. Biotechnol. 174, 2096–2113 (2014)

    Article  Google Scholar 

  7. Boshoff, S., Gottumukkala, L.D., van Rensburg, E., Görgens, J.: Paper sludge (PS) to bioethanol: evaluation of virgin and recycle mill sludge for low enzyme, high-solids fermentation. Bioresour. Technol. 203, 103–111 (2016)

    Article  Google Scholar 

  8. Cavka, A., Alriksson, B., Rose, S.H., van Zyl, W.H., Jönsson, L.J.: Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger. J. Ind. Microbiol. Biotechnol. 41, 1191–1200 (2014)

    Article  Google Scholar 

  9. Kang, L., Wang, W., Pallapolu, V.R., Lee, Y.Y.: Enhanced ethanol production from de-ashed paper sludge by simultaneous saccharification and fermentation and simultaneous saccharification and co-fermentation. BioResources 6, 3791–3808 (2011)

    Google Scholar 

  10. Marques, S., Alves, L., Roseiro, J.C., Girio, F.M.: Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenerg. 32, 400–406 (2008)

    Article  Google Scholar 

  11. Schroeder, B.G., Zanoni, P.R.S., Magalhães, W.L.E., Hansel, F.A., Tavares, L.B.B.: Evaluation of biotechnological processes to obtain ethanol from recycled paper sludge. J. Mater. Cycles. Waste Manag. (2015). doi:10.1007/s10163-015-0445-0

    Google Scholar 

  12. Dumonceaux, T.J., Hill, J.E., Pelletier, C.P., Paice, M.G., Van Kessel, A.G., Hemmingsen, S.M.: Molecular characterization of microbial communities in Canadian pulp and paper activated sludge and quantification of a novel Thiothrix eikelboomii-like bulking filament. Can. J. Microbiol. 52, 494–500 (2006)

    Article  Google Scholar 

  13. Riesenfeld, C.S., Schloss, P.D., Handelsman, J.: Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004)

    Article  Google Scholar 

  14. Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K-H., et al.: Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014)

    Article  Google Scholar 

  15. Chandra, R., Singh, R.: Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem. Eng. J. 61, 49–58 (2012)

    Article  Google Scholar 

  16. Raj, A., Chandra, R., Reddy, M.M.K., Purohit, H.J., Kapley, A.: Biodegradation of kraft lignin by a newly isolated bacterial strain, Aneurinibacillus aneurinilyticus from the sludge of a pulp paper mill. World J. Microbiol. Biotechnol. 23, 793–799 (2007)

    Article  Google Scholar 

  17. Zhou, J.Z., Bruns, M.A., Tiedje, J.M.: DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996)

    Google Scholar 

  18. Bates, S.T., Berg-Lyons, D., Caporaso, J.G., Walters, W.A., Knight, R., Fierer, N.: Examining the global distribution of dominant archaeal populations in soil. ISME J. 5, 908–917 (2011)

    Article  Google Scholar 

  19. Nolte, V., Pandey, R.V., Jost, S., Medinger, R., Ottenwalder, B., Boenigk, J., Schlotterer, C.: Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol. Ecol. 19, 2908–2915 (2010)

    Article  Google Scholar 

  20. Schmieder, R., Edwards, R.: Quality control and preprocessing of metagenomic datasets. Bioinformatics. 27, 863–864 (2011)

    Article  Google Scholar 

  21. Edgar, R.C.: Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26, 2460–2461 (2010)

    Article  Google Scholar 

  22. Edgar, R.C.: UPARSE: highly accurate OTU sequences from microbial amplicons reads. Nat. Methods. 10, 996–1000 (2013)

    Article  Google Scholar 

  23. Cole, J.R., Wang, Q., Fish, J.A., Chai, B.L., McGarrell, D.M., et al.: Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014)

    Article  Google Scholar 

  24. Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., et al.: The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013)

    Article  Google Scholar 

  25. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., et al.: QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010)

    Google Scholar 

  26. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Roja, M., Brodie, E.L., et al.: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006)

    Article  Google Scholar 

  27. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., et al.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013)

    Article  Google Scholar 

  28. Nogueira, E., Cavalcanti, M.: Cellulolytic fungi isolated from processed oats. Rev. Microbiol. 27, 7–9 (1996)

    Google Scholar 

  29. Ruijssenaars, H.J., Hartmans, S.: Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl. Microbiol. Biotechnol. 55, 143–149 (2001)

    Article  Google Scholar 

  30. Pointing, S.B.: Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 2, 17–33 (1999)

    Google Scholar 

  31. Staley, J.T., Irgens, R.L., Brenner, D.J.: Enhydrobacter aerosaccus gen. nov., sp. nov., a gas-vaculoated facultative anaerobic, heterotrophic rod. Int. J. Syst. Bacteriol. 37, 289–291 (1987)

    Article  Google Scholar 

  32. Kawamura, T., Fujiwara, N., Naka, T., Mitani, A., Kubota, H., Tomida, J., et al.: Genus Enhydrobacter Staley et al. 1987 should be recognized as a member of the family Rhodospirillaceae within the class Alphaproteobacteria. Microbiol. Immunol. 56, 21–26 (2012)

    Article  Google Scholar 

  33. Keely, S.P., Brinkman, N.E., Zimmerman, B.D., Wendell, D., Ekeren, K.M., et al.: Characterization of the relative importance of human- and infrastructure-associated bacteria in grey water: a case study. J. Appl. Microbiol. 119, 289–301 (2015)

    Article  Google Scholar 

  34. Paiva, M.C., Avila, M.P., Reis, M.P., Costa, P.S., Nardi, R.M.D., Nascimento, A.M.A: The microbiota and abundance of the class 1 integron-integrase gene in tropical sewage treatment plant influent and activated sludge. PLoS One. 10, e0131532 (2015)

    Article  Google Scholar 

  35. Premalatha, N., Gopal, N.O., Jose, P.A., Anandham, R., Kwon, S.W.: Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front. Microbiol. 6, 1046 (2015)

    Article  Google Scholar 

  36. Cao, S.-J., Deng, C.-P., Li, B.-Z., Dong, X.-Q., Yuan, H.-L.: Cloacibacterium rupense sp. nov., isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 60, 2023–2026 (2010)

    Article  Google Scholar 

  37. Allen, T.D., Lawson, P.A., Collins, M.D., Falsen, E., Tanner, R.S.: Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int. J. Syst. Evol. Microbiol. 56, 1311–1316 (2006)

    Article  Google Scholar 

  38. Ramirez, E., Robles, E., Martinez, B., Ayala, R., Sainz, G., Martinez, M.E., Gonzalez, M.E.: Distribution of free-living amoebae in a treatment system of textile industrial wastewater. Exp. Parasitol. 145, 534–538 (2014)

    Article  Google Scholar 

  39. Kilvington, S., Price, J.: Survival of Legionella pneumophila within cysts of Acanthamoeba polyphaga following chlorine exposure. J. Appl. Bacteriol. 68, 519–525 (1990)

    Article  Google Scholar 

  40. Santos, L.A., Fereira, V., Pereira, M.O., Nicolau, A.: Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system. Eur. J. Protistol. 50, 319–328 (2014)

    Article  Google Scholar 

  41. Cordi, L., Assalin, M.R., Ponezi, A.N., Durán, N.: Identification of microbiota for activated sludge acclimated by paper mil effluent Kraft E1 bioremediation. J Bioremed Biodeg. 3, 169 (2012)

    Article  Google Scholar 

  42. Vaz-Moreira, I., Egas, C., Nunes, O.C., Manaia, C.M.: Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample. A. van Leeuw. 100, 245–257 (2011)

    Article  Google Scholar 

  43. Meyer, T., Edwards, E.A.: Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 65, 321–349 (2014)

    Article  Google Scholar 

  44. Sarto, C., Sansigolo, C.A.: Cinética da remoção dos extrativos da madeira de Eucalyptus grandis durante polpação Kraft. Acta Sci. Tech. 32, 227–235 (2010)

    Article  Google Scholar 

  45. Sánchez, C.: Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27, 185–194 (2009)

    Article  Google Scholar 

  46. Hong, Y., Dashtban, M., Chen, S., Song, R., Qin, W.: Lignin in paper mill sludge is degraded by white-rot fungi in submerged fermentation. J. Microb. Biochem. Technol. 7, 177–181 (2015)

    Google Scholar 

  47. Niehaus, F., Bertoldo, C., Kahler, C., Antranikian, G.: Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51, 711–729 (1999)

    Article  Google Scholar 

  48. Gomes, E., Guez, M.A.U., Martin, N., Silva, R.: Enzimas termoestáveis: fontes, produção e aplicação industrial. Quim. Nova. 30, 136–145 (2007)

    Article  Google Scholar 

  49. More, T.T., Yan, S., Tyagi, R.D., Surampalli, R.Y.: Potential use of filamentous fungi for wastewater sludge treatment. Bioresour. Technol. 101, 7691–7700 (2010)

    Article  Google Scholar 

  50. Guo, J.S., Xu, Y.F.: Review of enzymatic sludge hydrolysis. J. Bioremed. Biodegrad. 2, 130 (2011)

    Google Scholar 

  51. Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391 (2008)

    Article  Google Scholar 

  52. Sridevi, B., Charya, M.A.: Isolation, identification and screening of potential cellulase-free xylanase producing fungi. Afr. J. Biotechnol. 10, 4624–4630 (2011)

    Google Scholar 

  53. Ogbonna, A.I., Nwadiaro, P.O., Chuku, A., Ogbonna, C.I.C., Onwuliri, F.C.: Cellulase induction in three Aspergillus species isolated from Artemisia annua L. plantation soil using different cellulose substrates. J. Appl. Biotechnol. 3, 63–74 (2015)

    Article  Google Scholar 

  54. Khokhar, I., Haider, M.S., Mushtaq, S., Mukhtar, I.: Isolation and screening of highly cellulolytic filamentous fungi. J. Appl. Sci. Environ. Manag. 16, 223–226 (2012)

    Google Scholar 

  55. Narendhirakannan, R.T., Rathore, S.S., Mannivannan, A.: Screening of cellulase producing microorganisms from lake area containing water hyacinth for enzymatic hydrolysis of cellulose. J. Adv. Sci. Res. 5, 23–30 (2014)

    Google Scholar 

  56. Romano, N., Giffré, A., Sede, S.M., Campos, E., Cataldi, A., Talia, P.: Characterization of cellulolytic activities of environmental bacterial consortia from an Argentinian native forest. Curr. Microbiol. 67, 138–147 (2013)

    Article  Google Scholar 

  57. Maki, M.L., Broere, M., Leung, K.T., Qin, W.: Characterization of some efficient cellulase producing bacteria isolated from paper mill sludges and organic fertilizers. Int. J. Biochem. Mol. Biol. 2, 146–154 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Brazilian Agricultural Research Corporation (EMBRAPA) for funding the project “Energetic Forest-Sustainable Production and Conversion of Biomass into Energy” under which this study has been prepared; National Research Council for Scientific and Technological Development (CNPq) and Foundation for Research Support of Santa Catarina (FAPESC) for the fellowships (LBBT and KGHH), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Giongo.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heinz, K.G.H., Zanoni, P.R.S., Oliveira, R.R. et al. Recycled Paper Sludge Microbial Community as a Potential Source of Cellulase and Xylanase Enzymes. Waste Biomass Valor 8, 1907–1917 (2017). https://doi.org/10.1007/s12649-016-9792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9792-x

Keywords

Navigation