Advertisement

Waste and Biomass Valorization

, Volume 9, Issue 4, pp 691–699 | Cite as

Pozzolanic Characterization of Cuban Bamboo Leaf Ash: Calcining Temperature and Kinetic Parameters

  • Ernesto Villar CociñaEmail author
  • Holmer Savastano
  • Loïc Rodier
  • Manuel Lefran
  • Moisés Frías
Original Paper

Abstract

The paper presents a study of the pozzolanic activity of Cuban bamboo leaf ash. To evaluate the pozzolanic activity a conductometric method was used, which is based on the measurement of variation in electrical conductivity of a bamboo leaf ash (BLAsh)/lime solution with reaction time. Later, the kinetic parameters (in particular, the reaction rate constant and free energy of activation) are quantified by applying a kinetic-diffusive model. The pozzolanic activity is quantitatively evaluated according to the values obtained of the kinetic parameters. Other experimental techniques, such as X-ray diffraction and scanning electron microscopy, which complement the results coming from the conductometric method, were applied. Also, the paper reports on the influence of calcining temperature (500, 600 and 700 °C) on the pozzolanic activation of the bamboo leaves. The results show good pozzolanic properties of bamboo leaf ashes for temperatures between 500 and 700 °C, and only a little difference on the activation of bamboo leaf ash as a function of the calcining temperature applied. The BLAsh calcined at 500 °C showed the highest pozzolanic activity.

Keywords

Bamboo leaf ash Pozzolanic activity Calcining temperature Kinetic parameters 

Notes

Acknowledgments

The authors would like to thank the CNPq (Process no. 401704/2013-0, Project PVE), FAPESP (Process nos. 2011/12691-2 and 2012/51467-3) and to i-LINK program between CSIC and FAPESP (Process i-Link0675-2013 and 2013/50790-8 respectively) for their financial support. The third author is also grateful to CNPq Grant (PDJ, Process no. 150336/2015-2).This study is also part of the Framework Agreement of Collaboration between the IETcc-CSIC and FZEA-USP (ref: 2013040043).

References

  1. 1.
    Taylor, H.F.W.: Cement Chemistry, 2nd edn. Thomas Telford Services Ltd, London (1997)CrossRefGoogle Scholar
  2. 2.
    Aprianti, E., Shafigh, S., Bahri, P., Farahani, J.N.: Supplementary cementitious materials origin from agricultural wastes—a review. Constr. Build. Mater. 74, 176–187 (2015)CrossRefGoogle Scholar
  3. 3.
    Demis, S., Tapali, J.G., Papadakis, V.G.: Plant design and economics of rice husk ash exploitation as a pozzolanic material. Waste Biomass Valoriz. 6, 843–853 (2015)CrossRefGoogle Scholar
  4. 4.
    Fairbairn, E., Americano, B.B., Cordeiro, G.C., Paula, T.P., Toledo Filho, R.D., Silvoso, M.: Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manag. 91, 1864–1871 (2010)CrossRefGoogle Scholar
  5. 5.
    Frías, M., Villar-Cociña, E., Valencia-Morales, E.: Characterisation of sugar cane straw waste as pozzolanic material for construction: calcining temperature and kinetic parameters. Waste Manag 27, 533–538 (2007)CrossRefGoogle Scholar
  6. 6.
    Nakanishi, E.Y., Frías, M., Santos, S.F., Rodrigues, M.S., Vigil de la Villa, R., Rodriguez, O., Savastano, H.: Investigating the possible usage of elephant grass ash to manufacture the eco-friendly binary cements. J. Clean. Prod. 116, 236–243 (2016)CrossRefGoogle Scholar
  7. 7.
    Savastano Jr., H., Warden, P.G., Coutts, R.S.: Microstructure and mechanical properties of waste fibre–cement composites. Cem. Concr. Compos. 27, 583–592 (2005)CrossRefGoogle Scholar
  8. 8.
    Singh, N.B., Singh, V.D., Rai, S.: Hydration of bagasse ash-blended portland cement. Cem. Concr. Res. 30, 1485–1488 (2000)CrossRefGoogle Scholar
  9. 9.
    Teixeira, S.R., De Souza, A.E., De Almeida Santos, G.T., VilchePeña, A., Miguel, A.G.: Sugarcane bagasse ash as a potential quartz replacement in red ceramic. J. Am. Ceram. Soc. 91, 1883–1887 (2008)CrossRefGoogle Scholar
  10. 10.
    Villar-Cociña, E., Frías, M., Morales, E.V.: Sugar cane wastes as pozzolanic materials: application of mathematical model. ACI Mater. J. 105, 258–264 (2008)Google Scholar
  11. 11.
    Cordeiro, G.C., Toledo Filho, R.D., Fairbairn, M.R.N.: Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 23, 3301–3303 (2009)CrossRefGoogle Scholar
  12. 12.
    Frias, M., Rodrıguez, O., Nebreda, B., Garcıa, R., Villar-Cociña, E.: Influence of activation temperature of kaolinite based clay wastes on pozzolanic activity and kinetic parameters. Adv. Cem. Res. 22, 135–142 (2010)CrossRefGoogle Scholar
  13. 13.
    Frías, M., Villar-Cociña, E.: Influence of calcining temperature on the activation of sugar-cane bagasse: kinetic parameters. Adv. Cem. Res. 19, 109–115 (2007)CrossRefGoogle Scholar
  14. 14.
    Morales, E.V., Villar-Cociña, E., Frías, M., Santos, S.F., Savastano Jr., H.: Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): influence in the pozzolanic activation. Cem. Concr. Compos. 31, 22–28 (2009)CrossRefGoogle Scholar
  15. 15.
    Frías, M., Rodríguez, O., Sánchez de Rojas, M.I.: Paper sludge, an environmentally sound alternative source of MK based cementitious materials. A review. Constr. Build. Mater. 74, 37–48 (2015)CrossRefGoogle Scholar
  16. 16.
    Medina, C., Frías, M., Sánchez de Rojas, M.I.: Leaching in concretes containing recycled ceramic aggregate from the sanitary ware industry. J. Clean. Prod. 66, 85–91 (2014)CrossRefGoogle Scholar
  17. 17.
    Dwivedi, V.N., Singh, N.P., Das, S.S., Singh, N.B.: A new pozzolanic material for cement industry: bamboo leaf ash. Int. J. Phys. Sci. 1, 106–111 (2006)Google Scholar
  18. 18.
    Singh, N.B., Das, S.S., Singh, N.P., Dwivedi, V.N.: Hydration of bamboo leaf ash blended Portland cement. Indian J. Eng. Mater. Sci. 14, 69–76 (2007)Google Scholar
  19. 19.
    Frías, M., Savastano, H., Villar, E., Sánchez de Rojas, M.I., Santos, S.F.: Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos. 34, 1019–1023 (2012)CrossRefGoogle Scholar
  20. 20.
    Villar-Cociña, E., Morales, E.V., Santos, S.F., Savastano Jr., H., Frías, M.: Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cem. Concr. Compos. 33, 68–73 (2011)CrossRefGoogle Scholar
  21. 21.
    Villar-Cociña, E., Valencia-Morales, E., Gonzalez-Rodrıguez, R., Hernandez-Ruız, J.: Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: a kinetic–diffusive model. Cem. Concr. Res. 33, 517–524 (2003)CrossRefGoogle Scholar
  22. 22.
    Villar-Cociña, E., Frías, M., Valencia-Morales, E., Savastano, H.: Study of the pozzolanic reaction kinetics in sugar cane bagasse–clay ash/calcium hydroxide system: kinetic parameters and pozzolanic activity. Adv. Cem. Res. 21, 23–30 (2009)CrossRefGoogle Scholar
  23. 23.
    ASTM (311-05) Standard test methods for sampling and testing fly ash or natural pozzolans for use in Portland-cement concrete (2005) Google Scholar
  24. 24.
    BS EN 196-5: British Standard Euronorm 196. Methods of testing cement. Part 5: pozzolanicity test for pozzolanic cement (2005)Google Scholar
  25. 25.
    Frías, M., Villar-Cociña, E., Sánchez de Rojas, M.I., Valencia-Morales, E.: The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: application of a kinetic–diffusive model. Cem. Concr. Res. 35, 2137–2142 (2005)CrossRefGoogle Scholar
  26. 26.
    Rassk, E., Bhaskar, M.C.: Pozzolanic activity of pulverized fuel ash. Cem. Concr. Res. 5, 363–376 (1975)CrossRefGoogle Scholar
  27. 27.
    Luxán, M.P., Madruga, F., Saavedra, J.: Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem. Concr. Res. 19, 63–68 (1989)CrossRefGoogle Scholar
  28. 28.
    Payá, J., Borrachero, M.V., Monzó, J., Peris-Mora, E., Amahjour, F.: Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem. Concr. Res. 31, 41–49 (2001)CrossRefGoogle Scholar
  29. 29.
    Tashima, M.M., Soriano, L., Monzó, J., Borrachero, M.V., Akasaki, J.L., Payá, J.: New method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical conductivity measurements in lime: pozzolan suspensions. Const, Mater (2014). doi: 10.3989/mc.2014.00914 Google Scholar
  30. 30.
    Frías, M., Rodríguez, O.: Influence of activation temperature on reaction kinetics in recycled clay waste–calcium hydroxide systems. J. Am. Ceram. Soc. 91, 4044–4051 (2008)CrossRefGoogle Scholar
  31. 31.
    Villar-Cociña, E., Frias, M., Valencia-Morales, E., Sánchez de Rojas, M.I.: An evaluation of different kinetic models for determining the kinetic coefficients in sugar cane straw–clay ash/lime system. Adv. Cem. Res. 18, 17–26 (2006)CrossRefGoogle Scholar
  32. 32.
    Frías, M., Sánchez de Rojas, M.I.: Artificial pozoalns in eco-efficient concrete. In: Pacheco-Torgal, F., Jalali, S., Labrincha, J., John, V.M. (eds.) Eco-efficient Concrete, pp. 105–122. Woodhead Publishing Limited, Cambridge (2013)CrossRefGoogle Scholar
  33. 33.
    Boateng, A.A., Skeete, D.A.: Incineration of rice hull for use as a cementitious material: the guyana experience. Cem. Concr. Res. 20, 795–802 (1990)CrossRefGoogle Scholar
  34. 34.
    Frías, M., Villar, E., Savastano, H.: Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496 (2011)CrossRefGoogle Scholar
  35. 35.
    Khangaonkar, P.R., Rahmat, A., Jolly Kutty, K.G.: Kinetic study of the hydrothermal reaction between lime and rice-husk-ash silica. Cem. Concr. Res. 22, 577–588 (1992)CrossRefGoogle Scholar
  36. 36.
    Malhotra, S.K., Dave, N.G.: Investigations into the effect of addition of flyash and burnt clay pozzolana on certain engineering properties of cement composites. Cem. Concr. Compos. 21, 285–291 (1999)CrossRefGoogle Scholar
  37. 37.
    Sinthaworn, S., Nimityongskul, P.: Quick monitoring of pozzolanic reactivity of waste ashes. Waste Manag 29, 1526–1531 (2009)CrossRefGoogle Scholar
  38. 38.
    Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)CrossRefGoogle Scholar
  39. 39.
    Brouwers, H.J.H., Van Eijk, R.J.: Fly ash reactivity: extension and application of a shrinking core model and thermodynamic approach. J. Mater. Sci. 37, 2129–2141 (2002)CrossRefGoogle Scholar
  40. 40.
    García, R., Vigil de la Villa, R., Frías, M., Rodriguez, O., Martínez-Ramírez, S., Fernández-Carrasco, L., de Soto, I.S., Villar-Cociña, E.: Mineralogicalstudy of calcinedcoalwaste in a pozzolan/Ca(OH)2 system. Appl. Clay Sci. 108, 45–54 (2015)CrossRefGoogle Scholar
  41. 41.
    Renedo, M.J., Fernandez, J.: Kinetic modelling of the hydrothermal reaction of fly ash, Ca(OH)2 and CaSO4 in the preparation of desulfurant. Fuel 83, 525–532 (2004)CrossRefGoogle Scholar
  42. 42.
    Rosell-Lam, M., Villar-Cociña, E., Frías, M.: Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: kinetic parameters. Constr. Build. Mater. 25, 644–650 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhysicsCentral University of Las VillasSanta ClaraCuba
  2. 2.University of Sao PauloPirassunungaBrazil
  3. 3.Eduardo Torroja Institute (CSIC)MadridSpain

Personalised recommendations