Waste and Biomass Valorization

, Volume 8, Issue 4, pp 1139–1151 | Cite as

Transforming Sugarcane Bagasse and Vinasse Wastes into Hydrochar in the Presence of Phosphoric Acid: An Evaluation of Nutrient Contents and Structural Properties

  • Camila Almeida Melo
  • Francisco Holanda Soares Junior
  • Marcia Cristina Bisinoti
  • Altair Benedito Moreira
  • Odair Pastor FerreiraEmail author
Original Paper



Sugarcane bagasse and vinasse are wastes generated at large scales by the Brazilian sugarcane industry. Therefore, new waste treatment and management practices are essential for a sustainable industrial growth and here we purpose the hydrothermal carbonization (HTC) to converts wet biomass into carbon-based solids.


HTC of a mixture of sugarcane bagasse and vinasse was conducted at different temperatures, reaction times and phosphoric acid percentages. The chemical, structural and morphological properties of the hydrochars were evaluated by elemental analysis (CHNS), nutrient quantification (P, Ca, Mg, K), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM).


In the presence of phosphoric acid, the hydrochar yield increased as the ash content increased due to phosphate precipitates, as observed by XRD. The yield of the hydrochar decreased and the carbon and nitrogen content increased when the temperature increased from 180 to 230 °C. Hydrochars are amorphous and compositionally similar to lignites. The FTIR spectra showed bands at approximately 1700 and 1600 cm−1 in the hydrochar due to carboxylation and aromatization of the products, respectively. The presence of carboxylic acids is important due to their ability to interact with cations and hydrophilic molecules. Additionally, nutrients such as P, N, K, Ca, and Mg were concentrated in the hydrochar as inorganic phases.


HTC applied to sugarcane bagasse and vinasse wastes produces hydrochars primarily containing carbon, nitrogen, and other nutrients as inorganic phases. Hydrochars could potentially be used as an agricultural fertilizer.

Graphical Abstract


Hydrothermal carbonization Sugarcane bagasse Vinasse Phosphoric acid 



The authors are grateful to Central Analítica – UFC/CT–INFRA/MCTI–SISNANO/Pro-Equipamentos CAPES for providing the scanning electron microscopes and the Laboratório de Sucroquímica e Química Analítica – UNESP/IBILCE for providing the infrared spectrometer. O. P. F and M. C. B. also acknowledge support from CNPq (Grants 478743/2013-0 and 445487/2014-3) and FUNCAP (PRONEX PR2-0101-00006.01.00/15). We also appreciate the financial support and scholarship from FAPESP (Grants 2013/21776-7 and 2014/22400-3).

Supplementary material

12649_2016_9664_MOESM1_ESM.docx (2.9 mb)
The supplementary material (SM) presents photographs and SEM images of the hydrochars. The elemental composition obtained by EDS, EDS spectra for hydrochar R1, FTIR and XRD of sugarcane bagasse and vinasse and of hydrochars produced in the absence of phosphoric acid are also included. (DOCX 2990 kb)


  1. 1.
    Karp, S., Woiciechowski, A., Soccol, V., Soccol, C.: Pretreatment strategies for delignification of sugarcane bagasse: a review. Braz. Arch. Biol. Techn. 56(4), 679–689 (2013)CrossRefGoogle Scholar
  2. 2.
    Moraes, B.S., Zaiat, M., Bonomi, A.: Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew. Sust. Energ. Rev. 44, 888–903 (2015)CrossRefGoogle Scholar
  3. 3.
    Rolim, M.M., Lyra, M.R.C.C., Duarte, A.S., Medeiros, P.R.F., Silva, E.F.F., Pedrosa, E.M.R.: Influência de uma lagoa de distribuição de vinhaça na qualidade da água. Revista Ambiente Água 8, 155–171 (2013)Google Scholar
  4. 4.
    Loh, Y.R., Sujan, D., Rahman, M.E., Das, C.A.: Sugarcane bagasse—The future composite material: a literature review. Resour. Conserv. Recy. 75, 14–22 (2013)CrossRefGoogle Scholar
  5. 5.
    Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fuhner, C., Bens, O., Kern, J.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2(1), 89–124 (2011)CrossRefGoogle Scholar
  6. 6.
    Titirici, M., White, R., Falco, C., Sevilla, M.: Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energ. Environ. Sci. 5(5), 6796–6822 (2012)CrossRefGoogle Scholar
  7. 7.
    Roman, S., Nabais, J., Laginhas, C., Ledesma, B., Gonzalez, J.: Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process. Technol. 103, 78–83 (2012)CrossRefGoogle Scholar
  8. 8.
    Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A., Ro, K.: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chem. Eng. J. 200, 673–680 (2012)CrossRefGoogle Scholar
  9. 9.
    Bargmann, I., Rillig, M., Kruse, A., Greef, J., Kucke, M.: Effects of hydrochar application on the dynamics of soluble nitrogen in soils and on plant availability. J. Plant Nutr. Soil Sc. 177(1), 48–58 (2014)CrossRefGoogle Scholar
  10. 10.
    Cernansky, R.: State-of-the-art soil. Nature 517(7534), 258–260 (2015)CrossRefGoogle Scholar
  11. 11.
    Berge, N., Ro, K., Mao, J., Flora, J., Chappell, M., Bae, S.: Hydrothermal carbonization of municipal waste streams. Environ. Sci. Technol. 45(13), 5696–5703 (2011)CrossRefGoogle Scholar
  12. 12.
    Lu, X., Pellechia, P., Flora, J., Berge, N.: Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose. Bioresour. Technol. 138, 180–190 (2013)CrossRefGoogle Scholar
  13. 13.
    Sabio, E., Álvarez-Murillo, A., Roman, S., Ledesma, B.: Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: influence of the processing variables. Waste Manage. 47, 122–132 (2016)CrossRefGoogle Scholar
  14. 14.
    Chen, W., Ye, S., Sheen, H.: Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour. Technol. 118, 195–203 (2012)CrossRefGoogle Scholar
  15. 15.
    Hoekman, S., Broch, A., Robbins, C., Zielinska, B., Felix, L.: Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conv. Bioref. 3, 113–126 (2013)CrossRefGoogle Scholar
  16. 16.
    ASTM: Standard Test Method for Chemical Analysis of Wood Charcoal. Method D1762-84. ASTM International, Pennsylvania (2013)Google Scholar
  17. 17.
    EPA: Soil and waste pH. Method 9045D. Environmental Protection Agency, Washington, DC (2004)Google Scholar
  18. 18.
    Reza, M., Wirth, B., Luder, U., Werner, M.: Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour. Technol. 169, 352–361 (2014)CrossRefGoogle Scholar
  19. 19.
    Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E., Firi, L., Weiss-Hortala, E.: Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manage. 47, 114–121 (2016)CrossRefGoogle Scholar
  20. 20.
    Kang, S., Li, X., Fan, J., Chang, J.: Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Ind. Eng. Chem. Res. 51(26), 9023–9031 (2012)CrossRefGoogle Scholar
  21. 21.
    EPA: Acid Digestion of Sediments, Sludges and Soils. Method 3050B. Environmental Protection Agency, Washington, DC (1996)Google Scholar
  22. 22.
    APHA: Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC (2005)Google Scholar
  23. 23.
    He, C., Giannis, A., Wang, J.: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl. Energ. 111, 257–266 (2013)CrossRefGoogle Scholar
  24. 24.
    Wiedner, K., Naisse, C., Rumpel, C., Pozzi, A., Wieczorek, P., Glaser, B.: Chemical modification of biomass residues during hydrothermal carbonization—What makes the difference, temperature or feedstock? Org. Geochem. 54, 91–100 (2013)CrossRefGoogle Scholar
  25. 25.
    Xu, Q., Qian, Q.F., Quek, A., Ai, N., Zeng, G.N., Wang, J.W.: Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. Acs Sustain. Chem. Eng. 1(9), 1092–1101 (2013)CrossRefGoogle Scholar
  26. 26.
    Sato, S., Comerford, N.: Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian ultisol. Rev. Bras. Cienc. Solo 29(5), 685–694 (2005)CrossRefGoogle Scholar
  27. 27.
    Danso-Boateng, E., Shama, G., Wheatley, A., Martin, S., Holdich, R.: Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour. Technol. 177, 318–327 (2015)CrossRefGoogle Scholar
  28. 28.
    Funke, A., Ziegler, F.: Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel. Bioprod. Bior. 4(2), 160–177 (2010)CrossRefGoogle Scholar
  29. 29.
    Liu, F., Guo, M.: Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass. J. Mater. Sci. 50(4), 1624–1631 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Oliveira, I., Blohse, D., Ramke, H.: Hydrothermal carbonization of agricultural residues. Bioresour. Technol. 142, 138–146 (2013)CrossRefGoogle Scholar
  31. 31.
    Inoue, S., Sawayama, S., Dote, Y., Ogi, T.: Behaviour of nitrogen during liquefaction of dewatered sewage sludge. Biomass Bioenerg. 12(6), 473–475 (1997)CrossRefGoogle Scholar
  32. 32.
    Ramsurn, H., Kumar, S., Gupta, R.: Enhancement of biochar gasification in alkali hydrothermal medium by passivation of inorganic components using Ca(OH)(2). Energ. Fuel. 25(5), 2389–2398 (2011)CrossRefGoogle Scholar
  33. 33.
    van Krevelen, D.W.: Coal: Typology–Physics–Chemistry–Constitution. Elsevier, Amsterdam (1993)Google Scholar
  34. 34.
    Bekele, A., Roy, J.L., Young, M.A.: Use of biochar and oxidized lignite for reconstructing a functioning topsoil: plant growth response and soil nutrient concentrations. Soil Sci. 178(7), 344–358 (2013)CrossRefGoogle Scholar
  35. 35.
    Xu, K., Li, J., Zheng, M., Zhang, C., Xie, T., Wang, C.: The precipitation of magnesium potassium phosphate hexahydrate for P and K recovery from synthetic urine. Water Res. 80, 71–79 (2015)CrossRefGoogle Scholar
  36. 36.
    Parshetti, G., Hoekman, S., Balasubramanian, R.: Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches. Bioresour. Technol. 135, 683–689 (2013)CrossRefGoogle Scholar
  37. 37.
    Yuan, J., Xu, R., Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102(3), 3488–3497 (2011)CrossRefGoogle Scholar
  38. 38.
    Handke, M., Mozgawa, W.: Vibrational spectroscopy of the amorphous silicates. Vib. Spectrosc. 5(1), 75–84 (1993)CrossRefGoogle Scholar
  39. 39.
    Kabyemela, B., Adschiri, T., Malaluan, R., Arai, K.: Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind. Eng. Chem. Res. 38(8), 2888–2895 (1999)CrossRefGoogle Scholar
  40. 40.
    Karampasa, I., Kontoyannisa, C.: Characterization of calcium phosphates mixtures. Vib. Spectrosc. 64, 126–133 (2013)CrossRefGoogle Scholar
  41. 41.
    Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Wiley & Sons, Hoboken (2009)Google Scholar
  42. 42.
    Makreski, P., Jovanovski, G., Dimitrovska, S.: Minerals from Macedonia XIV. Identification of some sulfate minerals by vibrational (infrared and Raman) spectroscopy. Vib. Spectrosc. 39, 229–239 (2005)CrossRefGoogle Scholar
  43. 43.
    Gao, Y., Wang, X., Yang, H., Chen, H.: Characterization of products from hydrothermal treatments of cellulose. Energy 42(1), 457–465 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Camila Almeida Melo
    • 1
  • Francisco Holanda Soares Junior
    • 2
  • Marcia Cristina Bisinoti
    • 1
  • Altair Benedito Moreira
    • 1
  • Odair Pastor Ferreira
    • 2
    Email author
  1. 1.Laboratório de Estudos em Ciências Ambientais, Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências ExatasUNESP, Univ Estadual PaulistaSão José do Rio PretoBrazil
  2. 2.LaMFA - Laboratório de Materiais Funcionais Avançados, Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations