Waste and Biomass Valorization

, Volume 8, Issue 1, pp 21–40 | Cite as

Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification

  • Céline Vaneeckhaute
  • Viooltje Lebuf
  • Evi Michels
  • Evangelina Belia
  • Peter A. Vanrolleghem
  • Filip M. G. Tack
  • Erik Meers


Nutrient recovery from digested biodegradable waste as marketable products has become an important task for anaerobic digestion plants to meet both regulatory drivers and market demands, while producing an internal revenue source. As such, the present waste problem could be turned into an economic opportunity. The aim of this study was to provide a comprehensive overview and critical comparison of the available/emerging technologies for nutrient recovery from digestate, and a classification of the resulting end-products according to their fertilizer characteristics. Based on the stage of implementation, the technical performance, as well as financial aspects, struvite precipitation/crystallization, ammonia stripping and (subsequent) absorption using an acidic air scrubber were selected as best available technologies to be applied at full-scale for nutrient recovery as marketable fertilizer commodities. The resulting end-products can and should be classified as renewable nitrogen–phosphorus (N/P) precipitates and nitrogen–sulfur (N/S) solutions, respectively, in fertilizer and environmental legislations. This would stimulate their use and foster nutrient recovery technology implementation.


Anaerobic digestion Bio-based fertilizers Residuals management Sustainable agriculture Sustainable resource management Waste valorization 



This work has been funded by the European Commission under the Interreg IVb Project Arbor and by the Environmental & Energy Technology Innovation Platform (MIP) under the project Nutricycle. The first author is also funded by the Natural Science and Engineering Research Council of Canada (NSERC), the Fonds de Recherche sur la Nature et les Technologies (FRQNT) and Primodal Inc. through a BMP Industrial Innovation Scholarship (BMP doctorat 178263). Peter Vanrolleghem holds the Canada Research Chair in Water Quality Modelling.

Supplementary material

12649_2016_9642_MOESM1_ESM.docx (148 kb)
Supplementary material 1 (DOCX 148 kb)


  1. 1.
    Gellings, C.W., Parmenter, K.E.: Energy efficiency in fertilizer production and use. In: Gellings, W., Parmenter, K. (eds.) Efficient use and conservation of energy. Eolss Publishers, Oxford (2004)Google Scholar
  2. 2.
    Sutton, M.A., Bleeker, A., Howard, C.M., Bekunda, M., Grizzetti, B., De Vries, W., Van Grinsven, H.J.M, Abrol, Y.P., Adhya, T.K., Billen, G., Davidson, E.A., Datta, A., Diaz, R., Erisman, J.W., Liu, X.J., Oenema, O., Palm, C., Raghuram, N., Reis, S., Scholz, R.W., Sims, T., Westhoek, H., Zhang, F.S.: Our nutrient world: The challenge to produce more food and energy with less pollution; Global Overview of nutrient management; Centre for Ecology and Hydrology: Edinburgh, United Kingdom. (2013)
  3. 3.
    Scholz, R.W., Wellmer, F.-W.: Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? Global Environ. Change. 23, 11–27 (2013)CrossRefGoogle Scholar
  4. 4.
    Hou, D., Al-Tabbaa, A., Guthrie, P., Watanabe, K.: Sustainable waste and materials management: National policy and global perspective. Environ. Sci. Technol. 46(5), 2494–2495 (2012)CrossRefGoogle Scholar
  5. 5.
    Guest, J.S., Skerlos, S.J., Barnard, J.L., Beck, M.B., Daigger, G.T., Hilger, H., Jackson, S.J., Karvazy, K., Kelly, L., Macpherson, L., Mihelcic, J.R., Pramanik, A., Raskin, L., Van Loosdrecht, M.C.M., Yeh, D., Love, N.G.: A new planning and design paradigm to achieve sustainable resource recovery from wastewater. Environ. Sci. Technol. 42(16), 6126–6130 (2009)CrossRefGoogle Scholar
  6. 6.
    Natural Resource Canada: Towards an integrated action plan for the bio-economy; Critical conversation scoping paper; Natural Resources Canada: Ottawa, Ontario, Canada, 2015;
  7. 7.
    EuropaBio: Building a Bio-Based Economy for Europe in 2020; Policy guide; EuropaBio: Brussels, Belgium, 2015;
  8. 8.
    Novotny, V.: Water-energy nexus: Retrofitting urban areas to achieve zero pollution. Build. Res. Inf. 41(5), 589–604 (2013)CrossRefGoogle Scholar
  9. 9.
    United Nations Environment Programme: Green economy and trade: trends, challenges and opportunities. United Nations Environment Programme: Nairobi, Kenya, 2013.
  10. 10.
    European Commission: Roadmap to a Resource Efficient Europe; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee of the Regions: Brussels, Belgium, 2011;
  11. 11.
    Fehrenbach, H., Giegrich, J., Reinhardt, G., Sayer, U., Gretz, M., Lanje, K, Criteria for a sustainable use of bio-energy on a global scale; Report; German Federal Environment Agency: Dessau-Roßlau, Germany. (2008)
  12. 12.
    Vaneeckhaute, C. Nutrient recovery from bio-digestion waste: From field experimentation to model-based optimization. Joint Ph.D. Dissertation, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, and Faculté des Sciences et de Génie, Université Laval, Québec, Canada, 2015Google Scholar
  13. 13.
    Lemmens, E., Ceulemans, J., Elslander, H., Vanassche, S., Brauns, E., Vrancken, K.: Best available techniques (BAT) for animal manure processing. Academia Press, Ghent (2007)Google Scholar
  14. 14.
    Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A.: Phosphorus recovery from wastewater by struvite crystallization: a review. Crit. Rev. Env. Sci. Tec. 39(6), 433–477 (2009)CrossRefGoogle Scholar
  15. 15.
    Fenton, O., Uallachain, D.: Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res. 1(1), 49–56 (2012)CrossRefGoogle Scholar
  16. 16.
    Masse, L., Masse, D.I., Pellerin, Y.: The use of membranes for the treatment of manure: a critical literature review. Biosyst. Eng. 98(4), 371–380 (2007)CrossRefGoogle Scholar
  17. 17.
    Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van der Bruggen, B., Verstraete, W., Rabaey, K., Meesschaert, B.: Global phosphorus scarcity and full-scale P-recovery techniques: a review. Crit. Rev. Env. Sci. Technol. 45(4), 336–384 (2015)CrossRefGoogle Scholar
  18. 18.
    Morse, G.K., Brett, S.W., Guy, J.A., Lester, J.N.: Review: phosphorus removal and recovery technologies. Sci. Total Environ. 212, 69–81 (1998)CrossRefGoogle Scholar
  19. 19.
    Vaneeckhaute, C., Meers, E., Michels, E., Christiaens, P., Tack, F.M.G.: Fate of macronutrients in water treatment of digestate using vibrating reversed osmosis. Water Air Soil Poll. 223(4), 1593–1603 (2012)CrossRefGoogle Scholar
  20. 20.
    Vaneeckhaute, C., Meers, E., Michels, E., Buysse, J., Tack, F.M.G.: Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenerg. 49, 239–248 (2013)CrossRefGoogle Scholar
  21. 21.
    Vaneeckhaute, C., Meers, E., Michels, E., Ghekiere, G., Accoe, F., Tack, F.M.G.: Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: a field experiment. Biomass Bioenerg 55, 175–189 (2013)CrossRefGoogle Scholar
  22. 22.
    Vaneeckhaute, C., Ghekiere, G., Michels, E., Vanrolleghem, P.A., Tack, F.M.G., Meers, E.: Assessing nutrient use efficiency and environmental pressure of macro-nutrients in bio-based mineral fertilizers: a review of recent advances and best practices at field scale. Adv. Agron. 128, 137–180 (2014)CrossRefGoogle Scholar
  23. 23.
    Moeller, K., Mueller, T.: Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12(3), 242–257 (2012)CrossRefGoogle Scholar
  24. 24.
    Characterisation end products of biological treatment; Flemish compost agency: Mechelen, Belgium, 2012;
  25. 25.
    Digestate as alternative for chemical fertilizers: Physical, chemical and microbiological characterization of digestates; West Flemish experimental Center for Agriculture: Flanders, Belgium, (in Dutch) (2007)
  26. 26.
    Bond, T., Brouckaert, C.J., Foxon, K.M., Buckley, C.A.: A critical review of experimental and predicted methane generation from anaerobic codigestion. Water Sci. Technol. 65(1), 183–189 (2012)CrossRefGoogle Scholar
  27. 27.
    Hillel, D.: Soil in the environment: crucible of terrestrial life. Academia Press, New York City (2008)Google Scholar
  28. 28.
    Lubelloa, C., Goria, R., Niceseb, F.P., Ferrinic, F.: Municipal-treated wastewater reuse for plant nurseries irrigation. Water Res. 38(12), 2939–2947 (2004)CrossRefGoogle Scholar
  29. 29.
    Vasedan, P., Thapliyal, A., Srivastava, R.K., Pandey, A., Dastidar, M.G., Davies, P.: Fertigation potential of domestic wastewater for trea plantation. J. Sci. Ind. Res. 69, 146–150 (2010)Google Scholar
  30. 30.
    Hjorth, M., Christensen, K.V., Christensen, M.L., Sommer, S.G.: Solid-liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev. 30(1), 153–180 (2010)CrossRefGoogle Scholar
  31. 31.
    Uludag-Demirer, S., Demirer, G.N., Chen, S.: Ammonia removal from anaerobically digested dairy manure by struvite precipitation. Process Biochem. 40(12), 3667–3674 (2005)CrossRefGoogle Scholar
  32. 32.
    Bonmati, A., Flotats, X.: Air stripping of ammonia from pig slurry: characterisation and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manage. 23(3), 261–272 (2003)CrossRefGoogle Scholar
  33. 33.
    Gustin, S., Marinsek-Logar, R.: Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent. Process Saf. Environ. 89(1), 61–66 (2011)CrossRefGoogle Scholar
  34. 34.
    Liao, P.H., Chen, A., Lo, K.V.: Removal of nitrogen from swine manure wastewaters by ammonia stripping. Bioresour. Technol. 54(1), 17–20 (1995)CrossRefGoogle Scholar
  35. 35.
    Melse, R.W., Ogink, N.W.M.: Air scrubbing techniques for ammonia and odor reduction at livestock operations: review of on-farm research in the Netherlands. Trans. ASAE 48(6), 2303–2313 (2005)CrossRefGoogle Scholar
  36. 36.
    Kertesz, S., Beszedes, S., Laszlo, Z., Szabo, G., Hodur, C.: Nanofiltration and reverse osmosis of pig manure: comparison of results from vibratory and classical modules. Desalination Water Treat. 14(1–3), 233–238 (2010)CrossRefGoogle Scholar
  37. 37.
    Ledda, C., Schievano, A., Salati, S., Adani, F.: Nitrogen and water recovery from animal slurries by a new integrated ultrafiltration, reverse osmosis and cold stripping process: a case study. Water Res. 47(16), 6157–6166 (2013)CrossRefGoogle Scholar
  38. 38.
    Waeger, F., Delhaye, T., Fuchs, W.: The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Sep. Purif. Technol. 73(2), 271–278 (2010)CrossRefGoogle Scholar
  39. 39.
    Guo, X., Zeng, L., Jin, X.: Advanced regeneration and fixed-bed study of ammonium and potassium removal from anaerobic digested wastewater by natural zeolite. J. Environ. Sci. 25(5), 954–961 (2013)CrossRefGoogle Scholar
  40. 40.
    Pelin, K. N., Sander, B., Stoumann, J. L. Nutrient recovery from biogas digestate by adsorption and ion-exchange using clinoptilolite. In Proceedings of the 15th RAMIRAN International Conference: Versailles, France, 2013Google Scholar
  41. 41.
    A review of enhancement techniques, processing options and novel digestate products; Report OMK006—002; Waste and Resources Action Plan (WRAP): United Kingdom, 2012;
  42. 42.
    Gonzalez-Fernandez, C., Molinuevo-Salces, B., Cruz Garcia Gonzalez, M.: Nitrogen transformations under different conditions in open ponds by means of microalgae-bacteria consortium treating pig slurry. Bioresour. Technol. 102(2), 960–966 (2011)CrossRefGoogle Scholar
  43. 43.
    Xu, J., Shen, G.: Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresour. Technol. 102(2), 848–853 (2011)CrossRefGoogle Scholar
  44. 44.
    Adam, C., Peplinski, B., Michaelis, M., Kley, G., Simon, F.G.: Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manage. 29(3), 1122–1128 (2009)CrossRefGoogle Scholar
  45. 45.
    Schoumans, O.F., Rulkens, W.H., Oenema, O., Ehlert, P.A.I. Phosphorus recovery from animal manure. Technical opportunities and agro-economical perspectives. Alterra, Wageningen UR: Wageningen, the Netherlands, (2010)
  46. 46.
    Desmidt, E., Ghyselbrecht, K., Monballiu, A., Verstraete, W., Meesschaert, B.D.: Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale. Water Sci. Technol. 65(11), 1954–1962 (2012)CrossRefGoogle Scholar
  47. 47.
    Abma, W.R., Driessen, W., Haarhuis, R., van Loosdrecht, M.C.M.: Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci. Technol. 61(7), 1715–1722 (2010)CrossRefGoogle Scholar
  48. 48.
    Montag, D., Gethke, K., Pinnekamp, J.: Different approaches for prospective sludge management incorporating phosphorus recovery. J. Residuals Sci. Technol. 4(4), 173–178 (2007)Google Scholar
  49. 49.
    Graeser, S., Postl, W., Bojar, H.P., Berlepsch, P., Arnbruster, T., Raber, T., Ettinger, K., Walter, F.: Struvite-(K), KMgPO4·6H2O, the potassium equivalent of struvite—a new mineral. Eur. J. Mineral. 20(4), 629–633 (2008)CrossRefGoogle Scholar
  50. 50.
    Latifian, M., Liu, J., Mattiasson, B.: Struvite-based fertilizer and its physical and chemical properties. Environ. Technol. 33(24), 2691–2697 (2012)CrossRefGoogle Scholar
  51. 51.
    Ryu, H.-D., Lim, C.-S., Kim, Y.-K., Kim, K.-Y., Lee, S.-I.: Recovery of struvite obtained from semiconductor wastewater and reuse as a slow-release fertilizer. Environ. Eng. Sci. 29(6), 540–548 (2012)CrossRefGoogle Scholar
  52. 52.
    Shu, L., Schneider, P., Jegatheesan, V., Johnson, J.: An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresour. Technol. 97(17), 2211–2216 (2006)CrossRefGoogle Scholar
  53. 53.
    Nutrient recovery: State of the knowledge. Water Environment Research Foundation: United States, 2012;
  54. 54.
    Münch, E.V., Barr, K.: Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams. Water Res. 35, 151–159 (2001)CrossRefGoogle Scholar
  55. 55.
    Jaffer, Y., Clark, T.A., Pearce, P., Parsons, P.A.: Potential phospohorus recovery by struvite formation. Water Res. 36, 1834–1842 (2002)CrossRefGoogle Scholar
  56. 56.
    Dockhorn, T.: About the economy of phosphorus recovery. In: Mavinic, D., Koch, F., Ashley, S. (eds.) International conference on nutrient recovery from wastewater streams. IWA Publishing, London (2009)Google Scholar
  57. 57.
    Battistoni, P., Bocadoro, R., Fatone, F., Pavan, P.: Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environ. Technol. 26, 975–982 (2005)CrossRefGoogle Scholar
  58. 58.
    Battistoni, P., Paci, B., Fatone, F., Pavan, P.: Phosphorus removal from supernatants at low concentration using packed and fluidised bed reactors. Ind. Eng. Chem. Res. 44, 6701–6707 (2005)CrossRefGoogle Scholar
  59. 59.
    Doyle, J.D., Parsons, S.A.: Struvite formation, control and recovery. Water Res. 36(16), 3925–3940 (2002)CrossRefGoogle Scholar
  60. 60.
    Kohler, J.: Phosphorus recycling: regulation and economic analysis. In: Valsami-Jones, E. (ed.) Phosphorus in environmental technologies, principles and applications. IWA publishing, London (2004)Google Scholar
  61. 61.
    Recovery of plant nutrients for a sustainable agriculture. Fraunhofer Institute for interfacial engineering and biotechnology IGB: Germany, 2012;
  62. 62.
    Cusick, D.R., Logan, B.E.: Phosphate recovery as struvite within a single chamber microbial electrolysis cell. Bioresource Technol. 107, 110–115 (2012)CrossRefGoogle Scholar
  63. 63.
    Eggers, E., Dirkzwager, A.H., Van Der Honing, H.: Full-scale experiences with phosphate crystallisation in a crystalactor. Water Sci. Technol. 24(10), 333–334 (1991)Google Scholar
  64. 64.
    Szpyrkowicz, L., Ziliograndi, F.: Seasonal phosphorus removal in a Phostrip process. (1) 2 years plant performance. Water Res. 29(10), 2318–2326 (1995)CrossRefGoogle Scholar
  65. 65.
    Berg, U., Knoll, G., Kaschka, E., Kreutzer, V., Weidler, P.G., Nueesch, R.: P-RoC Phosphorus recovery from wastewater by crystallisation of calcium phosphate compounds. J. Residuals Sci. Tech. 4(3), 121–126 (2007)Google Scholar
  66. 66.
    Quan, X., Ye, C., Xiong, Y., Xiang, J., Wang, F.: Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping. J. Hazard. Mater. 178(1–3), 326–332 (2010)CrossRefGoogle Scholar
  67. 67.
    Wastewater technology fact sheet ammonia stripping; Technical report; USEPA: Washington, DC, United States, 2000;
  68. 68.
    Udert, K.M., Buckley, C.A., Wächtera, M., McArdella, C.S., Kohnd, T., Strandea, L., Zölliga, H., Huga, A., Obersone, A., Ettera, B. Technologies for the treatment of source-separated urine in the Thekwini municipality. In Proceedings of the WISA Biennal Conference: Mbombela, Mpumalanga, South Africa, 2014Google Scholar
  69. 69.
    Collivignarelli, C., Bertanza, G., Baldi, M., Avezzu, F.: Ammonia stripping from MSW landfill leachate in bubble reactors: process modeling and optimization. Waste Manage. 16(5), 455–466 (1998)CrossRefGoogle Scholar
  70. 70.
    Magri, A., Béline, F., Dabert, P.: Feasibility and interest of the Anammox process as treatment alternative for anaerobic digester supernatants in manure processing—an overview. J. Environ. Manage. 131, 170–184 (2013)CrossRefGoogle Scholar
  71. 71.
    Dorset LGL ammonia stripper; Technical report; Dorset: Wageningen UR, The Netherlands.
  72. 72.
    Manuzon, R.B., Zhao, L.Y., Keener, H.M., Darr, M.J.: A prototype acid spray scrubber for absorbing ammonia emissions from exhaust fans of animal buildings. Trans. ASABE 50(4), 1395–1407 (2007)CrossRefGoogle Scholar
  73. 73.
    Arends, F., Franke, G., Grimm, E., Gramatte, W., Häuser, S., Hahne, J. Exhaust air treatment systems for animal housing facilities, techniques—performance—costs; KTBL-Schrift 464; KTBL: Darmstadt, Germany. (2008)
  74. 74.
    Melse, R.W., Willers, H.C. Treatment of exhaust air of animal houses. Phase 1: Techniques and costs; Report 029; Agrotechnology & Food Innovations: Wageningen UR, the Netherlands, 2004;
  75. 75.
    Melse, R.W., Oginka, N.W.M., Rulkens, W.H.: Air treatment techniques for abatement of emissions from intensive livestock production. Open Agric. J. 3, 6–12 (2009)CrossRefGoogle Scholar
  76. 76.
    Cooper, C.D., Alley, F.C. (eds.): Air pollution control: A design approach, 4th edn. Waveland Press Inc, Long Grove (2011)Google Scholar
  77. 77.
    De Hoop, J.G., Daatselaar, C.H.G., Doornewaard, G.J., Tomson, N.C. Mineral concentrates from manure: economic analysis and user experiences from the pilots for manure treatment in 2009 and 2010; Rapport, 2275000242; LEI: Wageningen UR, Den Haag, the Netherlands, (in Dutch) (2011)
  78. 78.
    Velthof, G. L. Synthesis of the research in frame of the Pilot Mineral Concentrates; Alterra, Wageningen UR: Wageningen, the Netherlands. (in Dutch) (2011)
  79. 79.
    Norddahl, B., Rohold, L. BIOREK principle. In: Proceedings of the Bioenergy’98 conference—Expanding Bioenergy Partnerships: Madison, Wisconsin (1998)Google Scholar
  80. 80.
    Gerard, C.: Un pilote pour rejeter l’effluent en milieu natural. Réussir Porcs 85, 49–50 (2002)Google Scholar
  81. 81.
    Charlebois, Y.D.: lisier changé en eau potable. La Terre de chez nous 71, 1–2 (2000)Google Scholar
  82. 82.
    Semiat, R.: Energy issues in desalination processes. Environ. Sci. Technol. 42, 22 (2008)CrossRefGoogle Scholar
  83. 83.
    Moon, A.S., Lee, M. Energy consumption in forward osmosis desalination compared to other desalination techniques. Sci. Eng. Technol. 6 (2012) Google Scholar
  84. 84.
    Johnson, G., Culkin, B., Stowell, L. Membrane filtration of manure wastewater. A comparison of conventional treatment methods and VSEP, a vibratory RO membrane system; Technical Article; New Logic Research: Emeryville, Canada. (2004)
  85. 85.
    Membrane filtration of hog manure: A cost-effective and environmentally sound solution. New Logic Research Inc.: Emeryville, Canada. (2008)
  86. 86.
    Akoum, O., Jaffrin, M.Y., Ding, L.H.: Concentration of total milk proteins by high shear ultrafiltration in a vibrating membrane module. J. Membr. Sci. 247(1–2), 211–220 (2005)CrossRefGoogle Scholar
  87. 87.
    Chen, Z., Ngo, H.H., Guo, W.S., Listowski, A., O’Halloran, K., Thompson, M., Muthukaruppan, M.: Multi-criteria analysis towards the new end use of recycled water for household laundry: a case study in Sydney. Sci. Total Environ. 438, 59–65 (2012)CrossRefGoogle Scholar
  88. 88.
    Li, D., Zhang, X., Simon, G.P., Wang, H.: Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance. Water Res. 47(1), 209–215 (2013)CrossRefGoogle Scholar
  89. 89.
    Sant’Anna, V., Ferreira Marczak, L.D., Tessaro, I.C.: Membrane concentration of liquid foods by forward osmosis: process and quality view. J. Food Eng. 111(3), 483–489 (2012)CrossRefGoogle Scholar
  90. 90.
    Zhao, S., Zou, L., Tang, C.Y., Mulcahy, D.: Recent developments in forward osmosis: opportunities and challenges. J. Membr. Sci. 396, 1–21 (2012)CrossRefGoogle Scholar
  91. 91.
    Ippersiel, D., Mondor, M., Lamarche, F., Tremblay, F., Dubreuil, J., Masse, L.: Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping. J. Environ. Manage. 95, 165–169 (2012)CrossRefGoogle Scholar
  92. 92.
    Mondor, M., Masse, L., Ippersiel, D., Lamarche, F., Masse, D.I.: Use of electrodialysis and reverse osmosis for the recovery and concentration of ammonia from swine manure. Bioresour. Technol. 99(15), 7363–7368 (2008)CrossRefGoogle Scholar
  93. 93.
    Decloux, M., Bories, A., Lewandowski, R., Fargues, C., Mersad, A., Lameloise, M.L., Bonnet, F., Dherbecourt, B., Osuna, L.N.: Interest of electrodialysis to reduce potassium level in vinasses. Preliminary experiments. Desalination 146(1–3), 393–398 (2002)CrossRefGoogle Scholar
  94. 94.
    Mondor, M., Ippersiel, D., Lamarche, F., Masse, L.: Fouling characterization of electrodialysis membranes used for the recovery and concentration of ammonia from swine manure. Bioresour. Technol. 100(2), 566–571 (2009)CrossRefGoogle Scholar
  95. 95.
    Transmembranechemosorption; Sustec, 2014;
  96. 96.
    Rulkens, W.H., Klapwijk, A., Willers, H.C.: Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges. Environ. Pollut. 102(1), 727–735 (1998)CrossRefGoogle Scholar
  97. 97.
    Norddahl, B., Horn, V.G., Larsson, M., du Preez, J.H., Christensen, K.A.: Membrane contacter for ammonia stripping, pilot scale experience and modelling. Desalination 199, 172–174 (2006)CrossRefGoogle Scholar
  98. 98.
    Ganrot, Z.: Use of zeolites for improved nutrient recovery from decentralized domestic wastewater. In: Inglezakis, V.J., Zorpas, A.A. (eds.) Handbook of natural zeolites. Bentham Science Publishers, Beijing (2012)Google Scholar
  99. 99.
    Wendling, L.A., Blomberg, P., Sarlin, T., Priha, O., Arnold, M.: Phosphorus sorption and recovery using mineral-based materials: sorption mechanisms and phytoavailability. Appl. Geochem. 2013(37), 157–169 (2013)CrossRefGoogle Scholar
  100. 100.
    Çelik, M.S., Ozdemir, B., Turan, M., KoyuncuI, A.G., Sarikaya, H.Z.: Removal of ammonia by natural clay minerals using fixed and fluidised bed column reactors. Water Sci. Technol. 1(1), 81–88 (2001)Google Scholar
  101. 101.
    Du, Q., Liu, S., Cao, Z., Wang, Y.: Ammonia removal from aqueous solution using natural Chinese clinoptilolite. Separ. Purif. Technol. 44, 229–234 (2005)CrossRefGoogle Scholar
  102. 102.
    Jorgensen, S.E., Libor, O., Grabir, K.L., Barkacs, K.: Ammonia removal by use of clinoptilolite. Water Res. 10(3), 213–224 (1976)CrossRefGoogle Scholar
  103. 103.
    Koon, J.H., Kaufman, W.J.: Ammonia removal from municipal wastewaters by ion exchange. J. WPCF 47(3), 448–465 (1975)Google Scholar
  104. 104.
    Wang, Q.H., Yang, Y.N., Yu, C., Huang, H., Kim, M., Feng, C.P.: Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes. Bioresource Technol. 102(14), 7064–7068 (2011)CrossRefGoogle Scholar
  105. 105.
    Weatherley, L.R., Miladinovic, N.D.: Comparison of the ion exchange uptake of ammonium ion onto New Zealand clinoptilolite and mordenite. Water Res. 38(20), 4305–4312 (2004)CrossRefGoogle Scholar
  106. 106.
    Wei, Y.X., Ye, Z.F., Wang, Y.L., Ma, M.G., Li, Y.F.: Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process. Environ. Technol. 32(11–12), 1337–1343 (2011)CrossRefGoogle Scholar
  107. 107.
    Zhang, M.L., Zhang, H.Y., Xu, D., Han, L., Niu, D.X., Zhang, L.Y.: Ammonium removal from aqueous solution by zeolites synthesized from low-calcium and high-calcium fly ashes. Desalination 277(1–2), 46–53 (2011)CrossRefGoogle Scholar
  108. 108.
    Hedström, A.: Ion exchange of ammonium in zeolites: a literature review. J. Environ. Eng. 127(8), 673–681 (2001)CrossRefGoogle Scholar
  109. 109.
    Hankins, N.P., Pliankarom, S., Hilal, N.: Removal of NH4 + ion from NH4Cl solution using clinoptilolite: a dynamic study using a continuous packed-bed column in up-flow mode. Sep. Sci. Technol. 39(6), 1347–1364 (2004)CrossRefGoogle Scholar
  110. 110.
    Liu, C.H., Lo, K.V.: Ammonia removal from composting leachate using zeolite, I: characterization of the zeolite. J. Environ. Sci. Health 39(9), 1671–1688 (2001)CrossRefGoogle Scholar
  111. 111.
    Milan, Z., Sanchez, E., Weiland, P., Pozas, C., Borja, R., Mayari, R.: Ammonia removal from anaerobically treated piggery manure by ion exchange in columns packed with homoionic zeolite. J. Chem. Eng. 66(1), 65–71 (1997)CrossRefGoogle Scholar
  112. 112.
    Wang, Y., Liu, S., Han, T., Chuan, S., Zhu, T.: Ammonia removal from leachate solution using natural Chinese clinoptilolite. J. Hazard. Mater. 136(3), 735–740 (2006)CrossRefGoogle Scholar
  113. 113.
    Liberti, L., Boari, G., Passino, R.: Advanced wastewater treatment by ion exchange. Effluent Water Treat. 22(7), 253–257 (1982)Google Scholar
  114. 114.
    Hasan, M.R., Chakrabarti, R. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper No. 531; FAO: Rome, Italy. (2009)
  115. 115.
    Shilton, A., Powell, N., Guieysse, B.: Plant based phosphorus recovery from wastewaters via algae and macrophytes. Curr. Opin. Biotechnol. 23(6), 1357–1378 (2012)Google Scholar
  116. 116.
    Ramjeed-Samad, M. Preliminary analysis of the nutritional content of duckweed and the quality of water that supports its growth in guyana. integrated water resources and coastal areas management. University of Guyana-Berbice: Guyana. (2010)
  117. 117.
    DUCKWEED: A tiny aquatic plant with enormous potential for agriculture and environment; Food and Agricultural Organisation: United States. (1999)
  118. 118.
    Mohedano, R.A., Costa, R.H.R., Tavares, F.A., Filho, P.B.: High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds. Bioresour. Technol. 112, 98–104 (2012)CrossRefGoogle Scholar
  119. 119.
    Skillicorn, P., Spira, W., Journey, W. A. New aquatic farming system for developing countries; Technical working paper; the World Bank Emena technical department, agriculture division: Washington, DC, United States. (1993)
  120. 120.
    Mburu, N., Tebitendwa, S.M., van Bruggen, J.J.A., Rousseau, D.P.L., Lens, P.N.L.: Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works. J. Environ. Manage. 128, 220–225 (2013)CrossRefGoogle Scholar
  121. 121.
    Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sust. Energ. Rev. 19, 360–369 (2013)CrossRefGoogle Scholar
  122. 122.
    Muylaert, K., Sanders, J. Inventarisation aquatic biomass: Comparison between algae and agricultural crops; Agentschap NL: The Netherlands, (in Dutch) (2010)
  123. 123.
    Benemann, J. R. Opportunities and challenges in algae biofuels production; Position paper; Algae World 2008: Singapore. (2008)
  124. 124.
    Lavens, P., Sorgeloos, P. Manual on the production and use of live food for aquaculture; FAO Fisheries Technical Paper. No. 361; Food and Agricultural Organisation (FAO): Rome, Italy. (1996)
  125. 125.
    Couteau, P., Sorgeloos, P.: The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. J. Shellf. Res. 11, 467–476 (1992)Google Scholar
  126. 126.
    Demirbas, A.: Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers. Manage 42(11), 1357–1378 (2001)CrossRefGoogle Scholar
  127. 127.
    Lundquist, T., Woertz, I., Quinn, N., Benemann, J. A realistic technology and engineering assessment of algae biofuel production; Enerfy Biosciences Institute: University of California, United States, 2010;
  128. 128.
    El-Shafai, S.A., El-Gohary, F.A., Nasr, F.A., Van Der Steen, N.P., Gijzen, H.J.: Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresour. Technol. 98, 798–807 (2007)CrossRefGoogle Scholar
  129. 129.
    Bolland, M.D.A.: Effectiveness of Ecophos compared with single and coastal superphosphates. Fert. Res. 45(1), 37–49 (1996)CrossRefGoogle Scholar
  130. 130.
    Petzet, S., Peplinski, B., Cornel, P.: On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. 46(12), 3769–3780 (2012)CrossRefGoogle Scholar
  131. 131.
    Rahman, M.M., Liu, Y., Kwag, J.H., Ra, C.: Recovery of struvite from animal wastewater and its nutrient leaching in soil. J. Hazard. Mater. 186(2–3), 2026–2030 (2011)CrossRefGoogle Scholar
  132. 132.
    Rahman, M.M., Salleh, M.A.M., Rashid, U., Ahsan, A., Hossain, M.M., Ra, C.S.: Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arab. J. Chem. 7(1), 139–155 (2014)CrossRefGoogle Scholar
  133. 133.
    Thompson, L.B. Field evaluation of the availability for corn and soybean of phosphorus recovered as struvite from corn fiber processing for bioenergy. Ph.D. Dissertation, Iowa State University, Ames, Iowa, United States (2013)Google Scholar
  134. 134.
    United Nations Statistics Division Website; Sulfur deposition; [consulted May 12th 2014]
  135. 135.
    Till, A.R.: Sulphur and sustainable agriculture. IFA, Paris (2010)Google Scholar
  136. 136.
    Gea-Messo P.T. Website; Ammoniumsulfate Crystallization;$file/ammonium%20sulfate.pdf [consulted May 12th 2014]
  137. 137.
    Glauser, J., Hossein, J., Chiyo, F. Controlled- and slow-release fertilizers. In Chemical Economics Handbook; IHS Chemical: United States, 2013Google Scholar
  138. 138.
    Palmer, W. J.; Kay, H. Slow-Release Fertilizer: Strategic Market Assessment. University of South Florida: Tampa, Florida, United States, 2005
  139. 139.
    Kruk, D.J., Elektorowicz, M., Oleszkiewicz, J.A.: Struvite precipitation and phosphorus removal using magnesium sacrificial anode. Chemosphere 101, 28–33 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Céline Vaneeckhaute
    • 1
  • Viooltje Lebuf
    • 2
  • Evi Michels
    • 3
  • Evangelina Belia
    • 4
  • Peter A. Vanrolleghem
    • 5
  • Filip M. G. Tack
    • 3
  • Erik Meers
    • 3
  1. 1.BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering DepartmentUniversité LavalQuebecCanada
  2. 2.Flemish Coordination Center for Manure Processing (VCM vzw)BruggeBelgium
  3. 3.Ecochem, Laboratory of Analytical and Applied Ecochemistry, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  4. 4.Primodal Inc.QuebecCanada
  5. 5.modelEAU, Département de génie civil et de génie des eauxUniversité LavalQuebecCanada

Personalised recommendations