Waste and Biomass Valorization

, Volume 8, Issue 3, pp 775–782 | Cite as

Waste Bread as a Biomass Source: Optimization of Enzymatic Hydrolysis and Relation between Rheological Behavior and Glucose Yield

  • A. Sükrü Demirci
  • Ibrahim Palabıyık
  • Tuncay Gümüs
  • Şeymanur Özalp
Original Paper


Amongst the many forms of food waste, bread is a major contributor to the problem. Two aims of this research investigate waste breads potential of being a bioresource for the production of fermentable sugars which are precursor of valuable bioproducts by fermentation process: finding optimum substrate, water and enzyme ratio to produce the highest amount of fermentable sugars and investigating the rheological behavior of the system during hydrolysis. Two stage waste bread hydrolysis was performed with enzymes α-amylase and amyloglucosiades and response surface methodology was used to optimize substrate, water and enzyme ratio. Discovery Hybrid Rheometer-2 (TA Instruments) fitted with a parallel-plate geometry was used to investigate steady flow viscosity of the slurry during hydrolysis. 99 % of theoretical maximum glucose yield, a main fermentable sugar, is achieved by optimizing enzymatic hydrolysis conditions of waste bread at liquefaction and saccharification stages. Just after the addition of α-amylase enzyme, substantial decrease is observed in viscosity and Casson apparent yield stress of the slurry. During saccharification stage, glucose yield increases dramatically while viscosity of the slurries is very low and does not change considerably. The results imply that utilizing high concentrations of waste bread as a feedstock to produce fermentation products offers economic benefits without causing high power consumption, excessive wear on equipment, and reduced conversion which are generally expected consequences for high-solid processing.


Free feedstock Glucose yield Enzyme Viscosity 



This research was supported with a Grant (TOVAG Project Number: 114O429) from The Scientific and Technological Research Council of Turkey (TUBITAK).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Summary Statement

This study was Funded by The Scientific and Technological Research Council of Turkey (TUBITAK) with a Grant Number of 114O429.


  1. 1.
    Sánchez, Ó.J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99(13), 5270–5295 (2008). doi: 10.1016/j.biortech.2007.11.013 CrossRefGoogle Scholar
  2. 2.
    Roseboom, T.J., Painter, R.C., Van Abeelen, A.F.M., Veenendaal, M.V.E., De Rooij, S.R.: Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70(2), 141–145 (2011). doi: 10.1016/j.maturitas.2011.06.017 CrossRefGoogle Scholar
  3. 3.
    Sukumaran, R.K., Pandey, A.: Ethanol from biomass. In: Biswas, S., Basak, P.R., Kaushik, N. (eds.) Biomass and Bioproducts-Emerging Trends, pp. 11–36. TIFAC, New Delhi (2009)Google Scholar
  4. 4.
    Taherzadeh, M.J., Karimi, K.: Enzymatic-based hydrolysis processes for ethanol. BioResources 2(4), 707–738 (2007)Google Scholar
  5. 5.
    Melikoglu, M., Webb, C.: Use of waste bread to produce fermentation products. In: Kosseva, M., Webb, C. (eds.) Food Industry Wastes: Assessment and Recuperation of Commodities. Academic Press, London (2013)Google Scholar
  6. 6.
    Mena, C., Adenso-Diaz, B., Yurt, O.: The causes of food waste in the supplier–retailer interface: evidences from the UK and Spain. Resour. Conserv. Recycl. 55(6), 648–658 (2011). doi: 10.1016/j.resconrec.2010.09.006 CrossRefGoogle Scholar
  7. 7.
    Mojović, L., Nikolić, S., Rakin, M., Vukasinović, M.: Production of bioethanol from corn meal hydrolyzates. Fuel 85(12–13), 1750–1755 (2006). doi: 10.1016/j.fuel.2006.01.018 CrossRefGoogle Scholar
  8. 8.
    Kunamneni, A., Singh, S.: Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochem. Eng. J. 27(2), 179–190 (2005). doi: 10.1016/j.bej.2005.08.027 CrossRefGoogle Scholar
  9. 9.
    Sindhu, R., Kuttiraja, M., Binod, P., Janu, K.U., Sukumaran, R.K., Pandey, A.: Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour. Technol. 102(23), 10915–10921 (2011). doi: 10.1016/j.biortech.2011.09.066 CrossRefGoogle Scholar
  10. 10.
    Kuttiraja, M., Sindhu, R., Varghese, P.E., Sandhya, S.V., Binod, P., Vani, S., Pandey, A., Sukumaran, R.K.: Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass Bioenergy 59, 142–150 (2013). doi: 10.1016/j.biombioe.2013.10.015 CrossRefGoogle Scholar
  11. 11.
    Binod, P., Kuttiraja, M., Archana, M., Janu, K.U., Sindhu, R., Sukumaran, R.K., Pandey, A.: High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92(1), 340–345 (2012). doi: 10.1016/j.fuel.2011.07.044 CrossRefGoogle Scholar
  12. 12.
    Aslanzadeh, S., Ishola, M.M., Richards, T., Taherzadeh, M.J.: An overview of existing individual unit operations. In: Vertès, A., Qureshi, N., Hodge, D. (eds.) Biorefineries, pp. 3–36. Elsevier, Amsterdam (2014)CrossRefGoogle Scholar
  13. 13.
    Dunaway, K.W., Dasari, R.K., Bennett, N.G., Eric Berson, R.: Characterization of changes in viscosity and insoluble solids content during enzymatic saccharification of pretreated corn stover slurries. Bioresour. Technol. 101(10), 3575–3582 (2010). doi: 10.1016/j.biortech.2009.12.071 CrossRefGoogle Scholar
  14. 14.
    Viamajala, S., McMillan, J.D., Schell, D.J., Elander, R.T.: Rheology of corn stover slurries at high solids concentrations—effects of saccharification and particle size. Bioresour. Technol. 100(2), 925–934 (2009). doi: 10.1016/j.biortech.2008.06.070 CrossRefGoogle Scholar
  15. 15.
    Ebrahimi, F., Khanahmadi, M., Roodpeyma, S., Taherzadeh, M.J.: Ethanol production from bread residues. Biomass Bioenergy 32(4), 333–337 (2008). doi: 10.1016/j.biombioe.2007.10.007 CrossRefGoogle Scholar
  16. 16.
    Kawa-Rygielska, J., Pietrzak, W., Czubaszek, A.: Characterization of fermentation of waste wheat-rye bread mashes with the addition of complex enzymatic preparations. Biomass Bioenergy 44, 17–22 (2012). doi: 10.1016/j.biombioe.2012.04.016 CrossRefGoogle Scholar
  17. 17.
    Oda, Y., Park, B.S., Moon, K.H., Tonomura, K.: Recycling of bakery wastes using an amylolytic lactic acid bacterium. Bioresour. Technol. 60(2), 101–106 (1997). doi: 10.1016/s0960-8524(97)00008-4 CrossRefGoogle Scholar
  18. 18.
    Melikoglu, M., Lin, C.S.K., Webb, C.: Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food Bioprod. Process. 91(4), 638–646 (2013). doi: 10.1016/j.fbp.2013.04.008 CrossRefGoogle Scholar
  19. 19.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959). doi: 10.1021/ac60147a030 CrossRefGoogle Scholar
  20. 20.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83(1), 1–11 (2002). doi: 10.1016/S0960-8524(01)00212-7 CrossRefGoogle Scholar
  21. 21.
    Ferreira, S., Duarte, A.P., Ribeiro, M.H.L., Queiroz, J.A., Domingues, F.C.: Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem. Eng. J. 45(3), 192–200 (2009). doi: 10.1016/j.bej.2009.03.012 CrossRefGoogle Scholar
  22. 22.
    Fujii, M., Kawamura, Y.: Synergistic action of α-amylase and glucoamylase on hydrolysis of starch. Biotechnol. Bioeng. 27(3), 260–265 (1985). doi: 10.1002/bit.260270308 CrossRefGoogle Scholar
  23. 23.
    Fujii, M., Homma, T., Taniguchi, M.: Synergism of α-amylase and glucoamylase on hydrolysis of native starch granules. Biotechnol. Bioeng. 32(7), 910–915 (1988). doi: 10.1002/bit.260320710 CrossRefGoogle Scholar
  24. 24.
    Montesinos, T., Navarro, J.-M.: Production of alcohol from raw wheat flour by amyloglucosidase and Saccharomyces cerevisiae. Enzyme Microb. Technol. 27(6), 362–370 (2000). doi: 10.1016/S0141-0229(00)00211-8 CrossRefGoogle Scholar
  25. 25.
    Pereira, L., Pereira, L., Teixeira, R.S.S., da Silva Bon, E.P., Freitas, S.P.: Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection. J. Ind. Microbiol. Biotechnol. 38(8), 901–907 (2011). doi: 10.1007/s10295-010-0857-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Sükrü Demirci
    • 1
  • Ibrahim Palabıyık
    • 1
  • Tuncay Gümüs
    • 1
  • Şeymanur Özalp
    • 1
  1. 1.Department of Food EngineeringNamık Kemal UniversityTekirdağTurkey

Personalised recommendations