Waste and Biomass Valorization

, Volume 7, Issue 6, pp 1397–1408 | Cite as

Biogas Production from Waste Microalgal Biomass Obtained from Nutrient Removal of Domestic Wastewater

  • Ozgul Calicioglu
  • Goksel N. DemirerEmail author
Original Paper


In this study, a semi-continuous photobioreactor was operated for the investigation of nutrient removal efficiency of a unialgal culture, Chlorella vulgarıs. Maximum nitrogen and phosphorous removal efficiencies of 99.6 and 91.2 % were achieved in the photobioreactor. The microalgal slurry obtained from the effluent of the photobioreactor was subjected to biochemical methane potential assay, after application of heat, autoclave, and thermochemical pretreatments to improve anaerobic digestibility and biogas production. Evaluation of pretreatment options indicated that heat pretreatment is the most efficient method in terms of enhancing anaerobic digestibility, at the chemical oxygen demand (COD) loading of 19 ± 0.5 g L−1. This method increased the methane yield by 83.0 %, from 223 to 408 mL CH4 g VS added −1 , compared to untreated microalgal slurry reactor with the same COD value. Among reactors with 35 ± 1.5 g L−1 initial COD concentration, autoclave-pretreated microalgal slurry was found to yield the highest methane value of 356 mL CH4 g VS added −1 , which was 43.0 % higher than the value observed in the reactor fed with untreated microalgal slurry. The thermochemical pretreatment caused production of inhibitory compounds and resulted in lower biomethane production and COD treatment values, compared to untreated microalgae. Outcomes of this study reveal that coupled micro-algal and anaerobic biotechnology could be a sustainable alternative for integrated nutrient removal and biofuel production applications.


Chlorella vulgaris Photobioreactor Anaerobic digestion Biogas Pretreatment 



Basal medium


Biochemical methane potential




Chemical oxygen demand


Dissolved oxygen


Gas chromatograph


High performance liquid chromatography




Sodium hydroxide


Free ammonia


Ammonium ion




Nitrate ion




Optical density




Photosynthetically active radiation (nm)


Phosphate ion




Soluble chemical oxygen demand


Semi-continuous cultivation photobioreactor


Substrate-to-inoculum ratio


Total ammonifiable nitrogen


Total chemical oxygen demand


Total Kjeldahl nitrogen


Total nitrogen


Total phosphorus


Total solids


Total suspended solids


Volatile fatty acids


Volatile dissolved solids


Volatile solids


Volatile suspended solids


Volume of gas per volume of broth per minute


  1. 1.
    REN21. 2015: Renewables 2015 Global Status Report. Paris (2015)Google Scholar
  2. 2.
    Jung, H., Baek, G., Kim, J., Seung, S., Lee, C.: Mild-temperature thermochemical pretreatment of green macroalgal biomass: effects on solubilization, methanation, and microbial community structure. Bioresour. Technol. 199, 326–335 (2016)CrossRefGoogle Scholar
  3. 3.
    Mahdy, A., Ballesteros, M., González-Fernández, C.: Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour. Technol. 199, 319–325 (2016)CrossRefGoogle Scholar
  4. 4.
    Clarens, A.F., Resurreccion, E.P., White, M.A., Colosi, L.M.: Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 44, 1813–1819 (2010)CrossRefGoogle Scholar
  5. 5.
    Murphy, C.F., Allen, D.T.: Energy-water nexus for mass cultivation of algae. Environ. Sci. Technol. 45, 5861–5868 (2011)CrossRefGoogle Scholar
  6. 6.
    Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217–232 (2010)CrossRefGoogle Scholar
  7. 7.
    Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O.: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 150, 51–56 (2010)CrossRefGoogle Scholar
  8. 8.
    Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484 (2009)CrossRefGoogle Scholar
  9. 9.
    Passos, F., Solé, M., García, J., Ferrer, I.: Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl. Energy 108, 168–175 (2013)CrossRefGoogle Scholar
  10. 10.
    Alzate, M.E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., Pérez-Elvira, S.I.: Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 123, 488–494 (2012)CrossRefGoogle Scholar
  11. 11.
    Chen, P.H., Oswald, W.J.: Thermochemıcal treatment for algal fermentation. Environ. Int. 24, 889–897 (1998)CrossRefGoogle Scholar
  12. 12.
    Keymer, P., Ruffell, I., Pratt, S., Lant, P.: High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresour. Technol. 131, 128–133 (2013)CrossRefGoogle Scholar
  13. 13.
    Demirer, G.N., Chen, S.: Anaerobic biogasification of undiluted dairy manure in leaching bed reactors. Waste Manag 28, 112–119 (2008)CrossRefGoogle Scholar
  14. 14.
    Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sustain. Energy Rev. 19, 360–369 (2013)CrossRefGoogle Scholar
  15. 15.
    Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R.: Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162, 1174–1186 (2010)CrossRefGoogle Scholar
  16. 16.
    Alcántara, C., García-Encina, P.A., Muñoz, R.: Evaluation of mass and energy balances in the integrated microalgae growth-anaerobic digestion process. Chem. Eng. J. 221, 238–246 (2013)CrossRefGoogle Scholar
  17. 17.
    Passos, F., Ferrer, I.: Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ. Sci. Technol. 48, 7171–7178 (2014)CrossRefGoogle Scholar
  18. 18.
    Tan, C.H., Show, P.L., Chang, J.S., Ling, T.C., Lan, J.C.W.: Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol. Adv. 33, 1219–1227 (2014)CrossRefGoogle Scholar
  19. 19.
    Wiley, P.E., Campbell, J.E., McKuin, B.: Production of biodiesel and biogas from algae: a review of process train options. Water Environ. Res. 83, 326–338 (2011)CrossRefGoogle Scholar
  20. 20.
    Demuez, M., Mahdy, A., Tomás-Pejó, E., González-Fernández, C., Ballesteros, M.: Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol. Bioeng. 112, 1955–1966 (2015)CrossRefGoogle Scholar
  21. 21.
    González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels. Bioprod. Biorefining. 6, 246–256 (2012)CrossRefGoogle Scholar
  22. 22.
    Domozych, D.S.: Algal cell walls. In: eLS. Wiley, Chichester (2011). doi: 10.1002/9780470015902.a0000315.pub3
  23. 23.
    Passos, F., Uggetti, E., Carrère, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Bioresour. Technol. 172, 403–412 (2014)CrossRefGoogle Scholar
  24. 24.
    Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., Olabi, A.G.: Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process. Technol. 138, 765–779 (2015)CrossRefGoogle Scholar
  25. 25.
    Mendez, L., Mahdy, A., Timmers, R.A., Ballesteros, M., González-Fernández, C.: Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour. Technol. 149, 136–141 (2013)CrossRefGoogle Scholar
  26. 26.
    Ometto, F., Quiroga, G., Pšenička, P., Whitton, R., Jefferson, B., Villa, R.: Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 65, 350–361 (2014)CrossRefGoogle Scholar
  27. 27.
    He, S., Fan, X., Katukuri, N.R., Yuan, X., Wang, F., Guo, R.-B.: Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresour. Technol. 204, 145–151 (2016)CrossRefGoogle Scholar
  28. 28.
    González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 110, 610–616 (2012)CrossRefGoogle Scholar
  29. 29.
    Passos, F., García, J., Ferrer, I.: Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresour. Technol. 138, 79–86 (2013)CrossRefGoogle Scholar
  30. 30.
    Schwede, S., Rehman, Z.-U., Gerber, M., Theiss, C., Span, R.: Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour. Technol. 143, 505–511 (2013)CrossRefGoogle Scholar
  31. 31.
    Vlyssides, A.G., Karlis, P.K.: Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour. Technol. 91, 201–206 (2004)CrossRefGoogle Scholar
  32. 32.
    Calicioglu, O., Demirer, G.N.: Integrated nutrient removal and biogas production by Chlorella vulgaris cultures. J. Renew. Sustain. Energy 7, 1–14 (2015)CrossRefGoogle Scholar
  33. 33.
    APHA: Standard Methods for the Examination of Water and Wastewater. APHA, Washington (2005)Google Scholar
  34. 34.
    Davidsson, A., La Cour Jansen, J.: Pre-treatment of wastewater sludge before anaerobic digestion—hygienisation, ultrasonic treatment and enzyme dosing. Vatten 62, 335–340 (2006)Google Scholar
  35. 35.
    Yen, H.W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 98, 130–134 (2007)CrossRefGoogle Scholar
  36. 36.
    Clark, P.B., Hillman, P.F.: Enhancement of anaerobic digestion using duckweed (Lemna minor) enriched with ıron. Water Environ. J. 10, 92–95 (1996)CrossRefGoogle Scholar
  37. 37.
    de Morais, M.G., Costa, J.A.V.: Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett. 29, 1349–1352 (2007)CrossRefGoogle Scholar
  38. 38.
    de Godos, I., Vargas, V.A., Guzman, H.O., Soto, R., Garcia, B., Garcia, P.A., Muñoz, R.: Assessing carbon and nitrogen removal in a novel anoxic–aerobic cyanobacterial–bacterial photobioreactor configuration with enhanced biomass sedimentation. Water Res. 61, 77–85 (2014)CrossRefGoogle Scholar
  39. 39.
    Becker, E.W.: Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge (2008)Google Scholar
  40. 40.
    Green, F.B., Lundquist, T.J., Oswald, W.J.: Energetics of advanced ıntegrated wastewater pond systems. Water Sci. Technol. 31, 9–20 (1995)CrossRefGoogle Scholar
  41. 41.
    Li, C., Yang, H., Li, Y., Cheng, L., Zhang, M., Zhang, L., Wang, W.: Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass. Bioresour. Technol. 132, 171–177 (2013)CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Guo, W., Cheng, C.L., Ho, S.H., Chang, J.S., Ren, N.: Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour. Technol. 200, 557–564 (2016)CrossRefGoogle Scholar
  43. 43.
    Appels, L., Degrève, J., Van der Bruggen, B., Van Impe, J., Dewil, R.: Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour. Technol. 101, 5743–5748 (2010)CrossRefGoogle Scholar
  44. 44.
    Kim, J., Park, C., Kim, T.-H., Lee, M., Kim, S., Kim, S.-W., Lee, J.: Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003)CrossRefGoogle Scholar
  45. 45.
    Costanzo, W., Jena, U., Hilten, R., Das, K.C., Kastner, J.R.: Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Res. 12, 377–387 (2015)CrossRefGoogle Scholar
  46. 46.
    Passos, F., Carretero, J., Ferrer, I.: Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem. Eng. J. 279, 667–672 (2015)CrossRefGoogle Scholar
  47. 47.
    Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)CrossRefGoogle Scholar
  48. 48.
    Pettersen, R.: The chemical composition of wood. Chem. Solid Wood 207, 1–9 (1984)Google Scholar
  49. 49.
    Tchobanoglous, G., Burton, F.L., Stensel, H.D.: Wastewater Engineering: Treatment, Disposal and Reuse. McGraw-Hill Inc., New York (2003)Google Scholar
  50. 50.
    Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.L.: Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 123, 143–156 (2014)CrossRefGoogle Scholar
  51. 51.
    Samson, R., Leduy, A.: Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol. Lett. 5, 671–676 (1983)CrossRefGoogle Scholar
  52. 52.
    Montingelli, M.E., Tedesco, S., Olabi, A.G.: Biogas production from algal biomass: a review. Renew. Sustain. Energy Rev. 43, 961–972 (2015)CrossRefGoogle Scholar
  53. 53.
    Ras, M., Lardon, L., Bruno, S., Bernet, N., Steyer, J.-P.: Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102, 200–206 (2011)CrossRefGoogle Scholar
  54. 54.
    Jegede, A.O.: Anaerobic digestion of cyanobacteria and chlorella to produce methane for biofuel. Int. J. Agric. Biol. Eng. 5, 1–8 (2012)Google Scholar
  55. 55.
    Demirer, G.N., Chen, S.: Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 40, 3542–3549 (2005)CrossRefGoogle Scholar
  56. 56.
    Lusk, P.: Methane Recovery from Animal Manures The Current Opportunities Casebook. National Renewable Energy Laboratory, NREL/SR, 580-25145, Washington (1998)Google Scholar
  57. 57.
    Speece, R.E.: Anaerobic Biotechnology and Odor/Corrosion Control for Municipalities and Industries. Archea Press, Nashville (2008)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Environmental EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations