Waste and Biomass Valorization

, Volume 7, Issue 4, pp 819–830 | Cite as

Initial Investigation of the Solar Drying Method for the Drying of Olive Oil By-Products

  • A. Maragkaki
  • F. Galliou
  • N. Markakis
  • G. Sabathianakis
  • C. Tsompanidis
  • G. Lolos
  • G. Mavrogiannis
  • G. Koukakis
  • K. Lasaridi
  • T. Manios
Original Paper

Abstract

In this study, a greenhouse-type solar dryer was developed in order to demonstrate an olive oil by-product and agro-residue Managing System, which uses solar drying processes for the treatment of olive oil mill residues to decrease the high energy consumption of the drying operations, thus decreasing the environmental impact of these residues. The resulting by-products, once dried out, have a final application as fuel. The greenhouse, with a roof height of 3.5 m and total area of 150 m2, consisted of three 3.0 × 1.5 × 0.20 m concrete tanks, where the drying of olive pomace (two- and three-phase olive mills), leaves and biomass from pruning for the production of solid biofuels was examined. The two-phase olive mill by-products required more drying time than three-phase olive mill by-products due to higher moisture content. Moreover, the moisture rate was positively related to minimum relative humidity and the highest material and ambient temperature. Using free solar energy for drying olive oil by-products can be beneficial from the point of view of energy consumption and, consequently, the drying system cost. The main innovation of the process is using the most abundantly available energy source in Greece—and the Mediterranean basin generally—the sun.

Keywords

Solar drying Greenhouse Agro-industrial waste Olive oil by-products Moisture Combustion 

Notes

Acknowledgments

This research has been co-funded by the European Union (European Regional Development Fund) and Greek national funds through the National Strategic Reference Framework (NSRF): Program “Development of Industrial Research and Technology (PAVET) 2013” (1359-ΒΕΤ-2013, Production of Organic Fertilizer and Biofuels from Olive Mill Wastes).

References

  1. 1.
    Hall, D.O., Rosillo-Calle, F., Williams, R.H., Woods, J.: Biomass for Energy: Supply Prospects. In: Johansson, T.B., Kelly, H., Reddy, A.K.N., Williams, R.H. (eds.) Renewable Energy, Sources for Fuels and Electricity, pp. 593–651. Island Press, Washington, DC (1993)Google Scholar
  2. 2.
    Goldemberg, J., Johanson, T.B.: World Energy Assessment. Overview 2004 Update, United Nation Development Programme, New York (2004)Google Scholar
  3. 3.
    Junginger, M., de Visser, E., Hjort-Gregersen, K., Koornneef, J., Raven, R., Faaij, A.: Technological learning in bioenergy systems. Energy Policy 34(18), 4024–4041 (2006)CrossRefGoogle Scholar
  4. 4.
    Hamelinck, C.N., Suurs, R.A.A., Faaij, A.P.C.: International bioenergy transport costs and energy balance. Biomass Bioenergy 29, 114–134 (2005)CrossRefGoogle Scholar
  5. 5.
    Hamelinck, C.N., Faaij, A.P.C.: Outlook for advanced biofuels. Energy Policy 34, 3268–3283 (2006)CrossRefGoogle Scholar
  6. 6.
    Turkenburg. W.C.: Renewable Energy Technologies. UNDP/UN-DESA/WEC, pp. 219–224 (2000)Google Scholar
  7. 7.
    Van den Broek, R.: Sustainability of Biomass Electricity Systems, p. 216. Department of Science Technology & Society, Utrecht University, Utrecht (2000)Google Scholar
  8. 8.
    Maragkaki, A., Kotrotsios, T., Samaras, P., Manou, A., Lasaridi, K., Manios, T.: Quantitative and qualitative analysis of biomass from agro-industrial processes in the central macedonia region, Greece. Waste Biomass Valorization (2015). doi: 10.1007/s12649-015-9448-2 Google Scholar
  9. 9.
    Meziane, S.: Drying kinetics of olive pomace in a fluidized bed dryer. Energy Convers. Manage. 52, 1644–1649 (2011)CrossRefGoogle Scholar
  10. 10.
    Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P.: Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem. 48(10), 1532–1552 (2013)CrossRefGoogle Scholar
  11. 11.
    Russo, G., Vivaldi, G.A., de Gennaro, B., Camposeo, S.: Environmental sustainability of different soil management techniques in a high-density olive orchard. J. Clean. Prod. (2014). doi: 10.1016/j.jclepro.2014.06.064 Google Scholar
  12. 12.
    El-Abbassi, A., Kiai, H., Raiti, J., Hafidi, A.: Application of ultrafiltration for olive processing wastewaters treatment. J. Clean. Prod. 65, 432–438 (2014)CrossRefGoogle Scholar
  13. 13.
    Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24, 4638–4645 (2010)CrossRefGoogle Scholar
  14. 14.
    Alwi, S.R.W., Manan, Z.A., Klemes, J.J., Huisingh, D.: Sustainability engineering for the future. J. Clean. Prod. 71, 1–10 (2014)CrossRefGoogle Scholar
  15. 15.
    Bagatin, R., Klemes, J.J., Reverberi, A.P., Huisingh, D.: Conservation and improvements in water resource management: a global challenge. J. Clean. Prod. 77, 1–9 (2014)CrossRefGoogle Scholar
  16. 16.
    Klemes, J.J., Varbanov, P.S., Kravanja, Z.: Recent developments in process integration. Chem. Eng. Res. Des. 91(10), 2037–2053 (2013)CrossRefGoogle Scholar
  17. 17.
    Alba, J., Hidalgo, F.J., Ruiz, M.A., Martínez, F., Moyano, M.J., Borja, R.: Elaboracion de aceite de oliva virgen. In: Barranco, D., Fernandez-Escobar, R., Rallo, L. (eds.) El Cultivo Del Olivo, pp. 551–588. Mundi-Prensa, Madrid (2001)Google Scholar
  18. 18.
    Fagernas, L., Brammer, J., Wilen, C., Lauer, M., Verhoeff, F.: Drying of biomass for second generation synfuel production. Biomass Bioenergy 34(9), 1267–1277 (2010)CrossRefGoogle Scholar
  19. 19.
    Holmberg, H., Ahtila, P.: Evaluation of energy efficiency in biofuel drying by means of energy and exergy analyses. Appl. Therm. Eng. 25(17–18), 3115–3128 (2005)CrossRefGoogle Scholar
  20. 20.
    Farhad, S., Saffar-Avval, M., Younessi-Sinaki, M.: Efficient design of feedwater heaters network in steam power plants using pinch technology and exergy analysis. Int. J. Energy Res. 32(1), 1–11 (2008)CrossRefGoogle Scholar
  21. 21.
    Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15(3), 1513–1524 (2011)CrossRefGoogle Scholar
  22. 22.
    Ekechukwu, O.V., Norton, B.: Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers. Manage. 40(6), 615–655 (1999)CrossRefGoogle Scholar
  23. 23.
    Sharma, A., Chen, C.R., Lan, N.V.: Solar-energy drying systems: a review. Renew. Sustain. Energy Rev. 13(6–7), 1185–1210 (2009)CrossRefGoogle Scholar
  24. 24.
    Celma, A.R., Rojas, S., López, F., Montero, I., Miranda, T.: Thin-layer drying behaviour of sludge of olive oil extraction. J. Food Eng. 80, 1261–1271 (2007)CrossRefGoogle Scholar
  25. 25.
    Kudra, T., Mujumdar, A.S.: Advanced Drying Technologies. Marcel Dekker, Inc., New York (2002)Google Scholar
  26. 26.
    Bennamoun, L.: Solar drying of wastewater sludge: a review. Renew. Sustain. Energy Rev. 16, 1061–1073 (2012)CrossRefGoogle Scholar
  27. 27.
    Salihoglu, N.K., Pinarli, V., Salihoglu, G.: Solar drying in sludge management in Turkey. Renew. Energy 32, 1661–1675 (2007)CrossRefGoogle Scholar
  28. 28.
    Arjona, R., Gracia, A., Ollero, P.: The drying of alpeorujo, a waste product of the olive mill industry. J. Food Eng. 41, 229–234 (1999)CrossRefGoogle Scholar
  29. 29.
    Gogus, F., Maskan, M.: Drying of olive pomace by a combined microwave-fan assisted convection oven. Nahrung 45, 129–132 (2001)CrossRefGoogle Scholar
  30. 30.
    Doymaz, I., Gorel, O., Akgun, N.A.: Drying characteristics of the solid by-product of olive oil extraction. Biosyst. Eng. 88, 213–219 (2004)CrossRefGoogle Scholar
  31. 31.
    Roux, N., Jung, D., Pannejon, J., Lemoine, C.: Modelling of the solar drying process Solia. In: Pierucci, S., Ferraris, G.B. (eds.) Proceeding of 20th European Symposium on Computer Aided Process Engineering (2010)Google Scholar
  32. 32.
    Slim, R., Zoughaib, A., Clodic, D.: Modeling of a solar and heat pump sludge drying system. Int. J. Refrig. 31, 1156–1168 (2008)CrossRefGoogle Scholar
  33. 33.
    Montero, I., Miranda, T., Arranz, J., Rojas, C.: Thin layer drying kinetics of by-products from olive oil processing. Int. J. Mol. Sci. 12, 7885–7897 (2011)CrossRefGoogle Scholar
  34. 34.
    Montero, I., Miranda, T., Arranz, J., Rojas, C.: Solar dryer application for olive oil mill wastes. Energies 8, 14049–14063 (2015)CrossRefGoogle Scholar
  35. 35.
    Vera, D., Jurado, F., Margaritis, N., Grammelis, P.: Experimental and economic study of a gasification plant fuelled with olive industry wastes. Energy Sustain. Dev. 23, 247–257 (2014)CrossRefGoogle Scholar
  36. 36.
    Vaxelaire, J., Cézac, P.: Moisture distribution in activated sludges: a review. Water Res. 38(9), 2215–2230 (2004)CrossRefGoogle Scholar
  37. 37.
    Ekechukwu, O.V., Norton, B.: Review of solar-energy drying systems II: an overview of solar drying technology. Energy Convers. Manag. 40(6), 615–655 (1999)CrossRefGoogle Scholar
  38. 38.
    Velis, C.A., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.T.: Biodrying for mechanical–biological treatment of wastes: a review of process science and engineering. Bioresour. Technol. 100(11), 2747–2761 (2009)CrossRefGoogle Scholar
  39. 39.
    Ekechukwu, O.V.: Experimental Studies of Integral-Type Natural Circulation Solar-Energy Tropical Crop Dryers. Cranfield Institute of Technology, Cranfield (1987)Google Scholar
  40. 40.
    Shao, L., Wang, T., Zhao, L., Wang, G., Lü, F., He, P.: The effect of adding straw on natural solar sludge drying. Dry. Technol. 33, 414–419 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Maragkaki
    • 1
    • 2
  • F. Galliou
    • 1
  • N. Markakis
    • 1
  • G. Sabathianakis
    • 3
  • C. Tsompanidis
    • 3
  • G. Lolos
    • 3
  • G. Mavrogiannis
    • 1
  • G. Koukakis
    • 4
  • K. Lasaridi
    • 2
  • T. Manios
    • 5
  1. 1.ANELIXIS CONSULTINGHeraklionGreece
  2. 2.Department of GeographyHarokopio UniversityKallithea, AthensGreece
  3. 3.ENVIROPLAN SAGerakas, AthensGreece
  4. 4.PEZA UnionHeraklionGreece
  5. 5.Department of Agriculture, School of Agriculture, Food and NutritionTechnological Educational Institute of CreteHeraklionGreece

Personalised recommendations