Waste and Biomass Valorization

, Volume 7, Issue 4, pp 861–869 | Cite as

Valorisation of Phosphorus Extracted from Dairy Cattle Slurry and Municipal Solid Wastes Digestates as a Fertilizer

  • V. Oliveira
  • L. M. Ottosen
  • J. Labrincha
  • C. Dias-FerreiraEmail author
Original Paper


Phosphorus is a vital cell component and an essential and irreplaceable element. Yet at the current rate of exploitation, the phosphate’s reserves will be fast depleted. Dairy cattle slurry and digestates from anaerobic digestion of municipal solid wastes (MSW) are organic wastes containing phosphorus which can potentially be used as a secondary source of this nutrient. The present study investigated the effect of pH in phosphorus release from these wastes using acid and base extraction followed by phosphorus recovery via precipitation, targeting the production of a fertilizer. Results showed that when using HNO3, 100 % of P content was extracted from dairy cattle slurry (2.0 < pH < 3.3) and 90 % from MSW digestates (1.2 < pH < 1.5). The maximum extraction was obtained after 2.5 h for dairy cattle slurry and 48 h for MSW digestates. The extraction efficiencies using NaOH were only 22 % for dairy cattle slurry (12.9 < pH < 13.4) and 9 % for MWS digestates (13.0 < pH < 13.4). Phosphorus precipitation from extracted solutions was carried out at a molar ratio of 1:1:1 for Mg:N:P and at pH around 8.0. Analysis of the harvested precipitates by XRD and SEM–EDS ruled out the formation of struvite, but validated the formation of amorphous calcium phosphates, a potential fertilizer that can help to close the cycle of this nutrient. During the process, heavy metals might become enriched in the precipitates. In the perspective of producing a fertilizer this is an undesirable process, and one that should be taken into account when considering phosphorus recovery from wastes.

Graphical Abstract


Phosphorus recovery Struvite Calcium phosphate Dairy cattle Anaerobic digestion Municipal solid waste 



The authors would like to thank Robert C. Pullar for help in obtaining SEM images. C. Dias-Ferreira gratefully acknowledges the FCT—Fundação para a Ciência e a Tecnologia for the financial support (SFRH/BPD/100717/2014).


  1. 1.
    Cornel, P., Schaum, C.: Phosphorus recovery from wastewater: needs, technologies and costs. Water Sci. Technol. 59, 1069–1076 (2009)CrossRefGoogle Scholar
  2. 2.
    Cordell, D., Drangert, J.O., White, S.: The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009)CrossRefGoogle Scholar
  3. 3.
    Cordell, D., Rosemarin, A., Schröder, J.J., Smit, A.L.: Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84, 747–758 (2011)CrossRefGoogle Scholar
  4. 4.
    Keplinger, K.O., Hauck, L.M.: The economics of manure utilization: model and application. J. Agric. Resour. Econ. 31, 414–440 (2006)Google Scholar
  5. 5.
    Ye, Z., Shen, Y., Ye, X., Zhang, Z., Chen, S., Shi, J.: Phosphorus recovery from wastewater by struvite crystallization: property of aggregates. J. Environ. Sci. (China) 26, 991–1000 (2014)CrossRefGoogle Scholar
  6. 6.
    Xu, H., He, P., Gu, W., Wang, G., Shao, L.: Recovery of phosphorus as struvite from sewage sludge ash. J. Environ. Sci. (China) 24, 1533–1538 (2012)CrossRefGoogle Scholar
  7. 7.
    Biswas, B.K., Inoue, K., Harada, H., Ohto, K., Kawakita, H.: Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. Environ. Sci. 21, 1753–1760 (2009)CrossRefGoogle Scholar
  8. 8.
    Cohen, Y.: Phosphorus dissolution from ash of incinerated sewage sludge and animal carcasses using sulphuric acid. Environ. Technol. 30, 1215–1226 (2009)CrossRefGoogle Scholar
  9. 9.
    Ottosen, L.M., Kirkelund, G.M., Jensen, P.E.: Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum. Chemosphere 91, 963–969 (2013)CrossRefGoogle Scholar
  10. 10.
    Petzet, S., Peplinski, B., Cornel, P.: On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. 46, 3769–3780 (2012)CrossRefGoogle Scholar
  11. 11.
    Stark, K., Plaza, E., Hultman, B.: Phosphorus release from ash, dried sludge and sludge residue from supercritical water oxidation by acid or base. Chemosphere 62, 827–832 (2006)CrossRefGoogle Scholar
  12. 12.
    Karunanithi, R., Szogi, A.A., Bolan, N., Naidu, R., Loganathan, P., Hunt, P.G., Vanotti, M.B., Saint, C.P., Ok, Y.S.: Phosphorus recovery and reuse from waste streams. Adv. Agron. 131, 173–250 (2015)CrossRefGoogle Scholar
  13. 13.
    Kalmykova, Y., Fedje, K.K.: Phosphorus recovery from municipal solid waste incineration fly ash. Waste Manag. 33, 1403–1410 (2013)CrossRefGoogle Scholar
  14. 14.
    Szogi, A.A., Vanotti, M.B., Hunt, P.G.: Process for removing and recovering phosphorus from animal waste. U.S. Patent 8673046, (2014)Google Scholar
  15. 15.
    Burns, R.T., Moody, L.B.: Phosphorus recovery from animal manures using optimized struvite precipitation. In: Proceedings Coagulants Flocculants Global Market and Technical. Opportunities for Water Treatment Chemicals, pp. 1–7 (2002)Google Scholar
  16. 16.
    Schuiling, R.D., Andrade, A.: Recovery of struvite from calf manure. Environ. Technol. 20, 765–768 (1999)CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Kwag, J.H., Kim, J.H., Ra, C.: Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater. Desalination 277, 364–369 (2011)CrossRefGoogle Scholar
  18. 18.
    Vanotti, M.B., Szogi, A.A., Hunt, P.G.: Extraction of Soluble Phosphorus from Swine Wastewater. In: American Society of Agricultural Engineers. pp. 1665–1674 (2003)Google Scholar
  19. 19.
    Kalmykova, Y., Harder, R., Borgestedt, H., Svanäng, I.: Pathways and management of phosphorus in urban areas. J. Ind. Ecol. 16, 928–939 (2012)CrossRefGoogle Scholar
  20. 20.
    Matsubae-Yokoyama, K., Kubo, H., Nakajima, K., Nagasaka, T.: A material flow analysis of phosphorus in Japan: the iron and steel industry as a major phosphorus source. J. Ind. Ecol. 13, 687–705 (2009)CrossRefGoogle Scholar
  21. 21.
    Ott, C., Rechberger, H.: The European phosphorus balance. Resour. Conserv. Recycl. 60, 159–172 (2012)CrossRefGoogle Scholar
  22. 22.
    Rodrigues, J., Oliveira, V., Lopes, P., Dias-Ferreira, C.: Door-to-door collection of food and kitchen waste in city centers under the framework of multimunicipal waste management systems in Portugal: the case study of Aveiro. Waste Biomass Valoriz. 6, 647–656 (2015). doi: 10.1007/s12649-015-9366-3 CrossRefGoogle Scholar
  23. 23.
    Quina, M.J., Lopes, D.V., Cruz, L.G., Andrade, J., Martins, R.C., Gando-Ferreira, L.M., Dias-Ferreira, C., Quinta-Ferreira, R.M.: Studies on the chemical stabilization of digestate from mechanically recovered organic fraction of municipal solid waste. Waste Biomass Valoriz. 6, 711–721 (2015)CrossRefGoogle Scholar
  24. 24.
    Rittmann, B.E., Mayer, B., Westerhoff, P., Edwards, M.: Capturing the lost phosphorus. Chemosphere 84, 846–853 (2011)CrossRefGoogle Scholar
  25. 25.
    Muster, T.H., Douglas, G.B., Sherman, N., Seeber, A., Wright, N., Güzükara, Y.: Towards effective phosphorus recycling from wastewater: quantity and quality. Chemosphere 91, 676–684 (2013)CrossRefGoogle Scholar
  26. 26.
    Peters, J., Combs, S., Hoskins, B., Jarman, J., Kovar, J., Watson, M., Wolf, A., Wolf, N.: Recommended Methods of Manure Analysis. Cooperative Extension Publishing, Wisconsin. (2003). Accessed 22 June 2015
  27. 27.
    APHA: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association and Water Environment Federation, Washington (1998)Google Scholar
  28. 28.
    Jin, Y., Hu, Z., Wen, Z.: Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment. Water Res. 43, 3493–3502 (2009)CrossRefGoogle Scholar
  29. 29.
    Eurostat: Municipal waste. (2015). Accessed 25 June 2015
  30. 30.
    MAOTDR: Decreto-Lei no 118/2006 de 21 de Junho. Diário da República - I Série-A. (2006)Google Scholar
  31. 31.
    Ferreira, C., Ribeiro, A.B., Ottosen, L.M.: Treatment of MSW fly ashes using the electrodialytic remediation technique. In: Brebbia, C.A., Kungolos, S., Popov, V., Itoh, H. (eds.) Waste Management and the Environment II, pp. 65–75. Wit Press, Auhurst (2004)Google Scholar
  32. 32.
    Le Corre, K.S., Valsami-Jones, E., Hobbs, P., Parsons, S.A.: Impact of calcium on struvite crystal size, shape and purity. J. Cryst. Growth 283, 514–522 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • V. Oliveira
    • 1
  • L. M. Ottosen
    • 2
  • J. Labrincha
    • 3
  • C. Dias-Ferreira
    • 1
    • 3
    Email author
  1. 1.Research Centre for Natural Resources, Environment and Society (CERNAS), College of AgriculturePolytechnic Institute of CoimbraCoimbraPortugal
  2. 2.Department of Civil Engineering, Building 118Technical University of DenmarkLyngbyDenmark
  3. 3.Materials and Ceramic Engineering Department, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations