Waste and Biomass Valorization

, Volume 7, Issue 3, pp 447–453 | Cite as

Screening of Bacteria for Protease Production and Feather Degradation

  • Caroline Torres de Oliveira
  • Leandro Pellenz
  • Jamile Queiroz Pereira
  • Adriano Brandelli
  • Daniel Joner Daroit
Short Communication


Feathers are recalcitrant wastes produced by the poultry industry. Considering potential environmental hazards and the need for energy conservation/recycling, adequate approaches are demanded for feathers reclamation. Microbial conversion is an interesting alternative from both technological and economical perspectives. Therefore, 15 bacterial strains were isolated from a site containing waste feathers, and evaluated for proteolytic and keratinolytic potentials. From these bacterial isolates, seven produced extracellular proteases in milk agar plates, also demonstrating the ability to grow on feather meal agar plates, preferentially at pH values from 7 to 9, and at 30–37 °C. The isolate named CL33A displayed higher efficiency for feather degradation in qualitative assays, and selected for studies in feather broth (FB), a medium containing whole feathers (10 g/L) as the sole source of carbon, nitrogen and energy. CL33A degraded 29, 75, and 95 % of the feathers in FB, after 96, 144 and 216 h of growth, respectively. Feather degradation was corroborated by increases in soluble protein concentration and medium pH. Production of proteolytic enzymes reached maximal values after 216–240 h of growth on FB, and CL33A also produced proteases when cultivated in feather meal, peptone, and soy protein isolate. Through 16S rRNA gene sequencing, this feather-degrading isolate was identified as Bacillus sp. CL33A. Bioprocessing could be a suitable technology aiming the management and valorization of feathers/feather meal, due to the production of protein hydrolysates and also proteolytic enzymes that could be used as important biocatalysts.


Functional screening Proteolytic potential Waste feathers Feather degradation Protease production 



C. T. Oliveira, L. Pellenz, and D. J. Daroit thank the Programa Institucional de Iniciação Científica (PRO-ICT) da Universidade Federal da Fronteira Sul, Brazil, and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (PROBIC/FAPERGS), Brazil.

Supplementary material

12649_2015_9464_MOESM1_ESM.doc (314 kb)
Supplementary material 1 (DOC 313 kb)


  1. 1.
    Instituto Brasileiro de Geografia e Estatística (IBGE): Indicadores IBGE—Estatística da produção pecuária. IBGE. (2015). In portuguese. Accessed 20 Aug 2015
  2. 2.
    Daroit, D.J., Brandelli, A.: A current assessment on the production of bacterial keratinases. Crit. Rev. Biotechnol. 34, 372–384 (2014)CrossRefGoogle Scholar
  3. 3.
    Poole, A.J., Church, J.S., Huson, M.G.: Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10, 1–8 (2009)CrossRefGoogle Scholar
  4. 4.
    Lasekan, A., Abu Bakar, F., Hashim, D.: Potential of chicken by-products as sources of useful biological resources. Waste Manag 33, 552–565 (2013)CrossRefGoogle Scholar
  5. 5.
    Chojnacka, K., Górecka, H., Michalak, I., Górecki, H.: A review: valorization of keratinous materials. Waste Biomass Valoriz. 2, 317–321 (2011)CrossRefGoogle Scholar
  6. 6.
    Kasana, R.C., Salwan, R., Yadav, S.K.: Microbial proteases: detection, production, and genetic improvement. Crit. Rev. Microbiol. 37, 262–276 (2011)CrossRefGoogle Scholar
  7. 7.
    Bach, E., Cannavan, F.S., Duarte, F.R.S., Taffarel, J.A.S., Tsai, S.M., Brandelli, A.: Characterization of feather-degrading bacteria from Brazilian soils. Int. Biodeterior. Biodegrad. 65, 102–107 (2011)CrossRefGoogle Scholar
  8. 8.
    Riffel, A., Brandelli, A.: Keratinolytic bacteria isolated from feather waste. Braz. J. Microbiol. 37, 395–399 (2006)CrossRefGoogle Scholar
  9. 9.
    Riffel, A., Lucas, F., Heeb, P., Brandelli, A.: Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179, 258–265 (2003)Google Scholar
  10. 10.
    Lane, D.J.: 16S/23S rRNA sequencing. In: Stackebrandt, E., Goodfellow, M.N. (eds.) Nucleic Acid Techniques in Bacterial Systematics, pp. 115–147. Wiley, Chichester (1991)Google Scholar
  11. 11.
    Hall, T.A.: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999)Google Scholar
  12. 12.
    Daroit, D.J., Corrêa, A.P.F., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodeterior. Biodegrad. 63, 358–363 (2009)CrossRefGoogle Scholar
  13. 13.
    Tang, W.L., Zhao, H.: Industrial biotechnology: tools and applications. Biotechnol. J. 4, 1725–1739 (2009)CrossRefGoogle Scholar
  14. 14.
    Ghosh, A., Maity, B., Chakrabarti, K., Chattopadhyay, D.: Bacterial diversity of East Calcutta wet land area: possible identification of potential bacterial population for different biotechnological uses. Microb. Ecol. 54, 452–459 (2007)CrossRefGoogle Scholar
  15. 15.
    Anbu, P., Annadurai, G., Hur, B.K.: Production of alkaline protease from a newly isolated Exiguobacterium profundum BK-P23 evaluated using the response surface methodology. Biologia 68, 186–193 (2013)CrossRefGoogle Scholar
  16. 16.
    Barros, F.F.C., Simiqueli, A.P.R., Andrade, C.J., Pastore, G.M.: Production of enzymes from agroindustrial wastes by biosurfactant-producing strains of Bacillus subtilis. Biotechnol. Res. Int. 2013, article ID 103960, (2013)Google Scholar
  17. 17.
    Singh, S.K., Tripathi, V.R., Jain, R.K., Vikram, S., Garg, S.K.: An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease. Microb. Cell Fact. 9, article 59, (2010)Google Scholar
  18. 18.
    Daroit, D.J., Corrêa, A.P.F., Brandelli, A.: Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45. Int. Biodeterior. Biodegrad. 65, 45–51 (2011)CrossRefGoogle Scholar
  19. 19.
    Son, H.J., Park, H.C., Kim, H.S., Lee, C.Y.: Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol. Lett. 30, 461–465 (2008)CrossRefGoogle Scholar
  20. 20.
    Łaba, W., Rodziewicz, A.: Keratinolytic potential of feather-fegrading Bacillus polymyxa and Bacillus cereus. Pol. J. Environ. Stud. 19, 371–378 (2010)Google Scholar
  21. 21.
    Queiroga, A.C., Pintado, M.E., Malcata, F.X.: Potential use of wool-associated Bacillus species for biodegradation of keratinous materials. Int. Biodeterior. Biodegrad. 70, 60–65 (2012)CrossRefGoogle Scholar
  22. 22.
    Bose, A., Pathan, S., Pathak, K., Keharia, H.: Keratinolytic protease production by Bacillus amyloliquefaciens 6B using feather meal as substrate and application of feather hydrolysate as organic nitrogen input for agricultural soil. Waste Biomass Valoriz. 5, 595–605 (2014)CrossRefGoogle Scholar
  23. 23.
    Paul, T., Das, A., Mandal, A., Halder, S.K., DasMohapatra, P.K., Pati, B.R., Mondal, K.C.: Valorization of chicken feather waste for concomitant production of keratinase, oligopeptides and essential amino acids under submerged fermentation by Paenibacillus woosongensis TKB2. Waste Biomass Valoriz. 5, 575–584 (2014)CrossRefGoogle Scholar
  24. 24.
    Lateef, A., Oloke, J.K., Kana, E.B.G., Sobowale, B.O., Ajao, S.O., Bello, B.Y.: Keratinolytic activities of a new feather-degrading isolate of Bacillus cereus LAU 08 isolated from Nigerian soil. Int. Biodeterior. Biodegrad. 64, 162–165 (2010)CrossRefGoogle Scholar
  25. 25.
    Gupta, R., Sharma, R., Beg, Q.K.: Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 33, 216–228 (2013)CrossRefGoogle Scholar
  26. 26.
    Gupta, R., Beg, Q.K., Lorenz, P.: Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59, 15–32 (2002)CrossRefGoogle Scholar
  27. 27.
    Gupta, R., Rajput, R., Sharma, R., Gupta, N.: Biotechnological applications and prospective market of microbial keratinases. Appl. Microbiol. Biotechnol. 97, 9931–9940 (2013)CrossRefGoogle Scholar
  28. 28.
    Adigüzel, A.C., Bitlisli, B.O., Yaşa, I., Eriksen, N.T.: Sequential secretion of collagenolytic, elastolytic, and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J. Appl. Microbiol. 107, 226–234 (2009)CrossRefGoogle Scholar
  29. 29.
    Corrêa, A.P.F., Daroit, D.J., Brandelli, A.: Characterization of a keratinase produced by Bacillus sp P7 isolated from an Amazonian environment. Int. Biodeterior. Biodegrad. 64, 1–6 (2010)CrossRefGoogle Scholar
  30. 30.
    Bach, E., Lopes, F.C., Brandelli, A.: Biodegradation of α and β-keratins by Gram-negative bacteria. Int. Biodeterior. Biodegrad. 104, 136–141 (2015)CrossRefGoogle Scholar
  31. 31.
    Mézes, L., Tamás, J.: Feather waste recycling for biogas production. Waste Biomass Valoriz. 6, 899–911 (2015)CrossRefGoogle Scholar
  32. 32.
    Fontoura, R., Daroit, D.J., Corrêa, A.P.F., Meira, S.M.M., Mosquera, M., Brandelli, A.: Production of feather hydrolysates with antioxidant, angiotensin-I converting enzyme- and dipeptidyl peptidase-IV-inhibitory activities. New Biotechnol. 31, 506–513 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Caroline Torres de Oliveira
    • 1
  • Leandro Pellenz
    • 1
  • Jamile Queiroz Pereira
    • 2
  • Adriano Brandelli
    • 2
  • Daniel Joner Daroit
    • 1
  1. 1.Laboratório de MicrobiologiaUniversidade Federal da Fronteira Sul (UFFS)Cerro LargoBrazil
  2. 2.Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de AlimentosUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations