Waste and Biomass Valorization

, Volume 6, Issue 5, pp 711–721 | Cite as

Studies on the Chemical Stabilisation of Digestate from Mechanically Recovered Organic Fraction of Municipal Solid Waste

  • M. J. Quina
  • D. V. Lopes
  • L. G. Cruz
  • J. Andrade
  • R. C. Martins
  • L. M. Gando-Ferreira
  • C. Dias-Ferreira
  • R. M. Quinta-Ferreira
Original Paper


This study aims to explore an innovative approach consisting of the Fenton’s process to stabilise organic wastes as an alternative to the traditional aerobic decomposition (composting). Digestate from the anaerobic digestion of the organic fraction of municipal solid wastes was taken from a mechanical–biological treatment plant and was thoroughly characterised regarding physical, chemical and biological properties. This sludge contained around 7.8 g Fe kg TS−1, which can be beneficial to the chemical oxidation. However, the use of zero-valent iron nanoparticles or iron(II) salt revealed treatment can be improved by adding extra iron into the system. The response surface methodology determined that the best peroxidation conditions were 35.6 g H2O2 kg TS−1 and 33.1 g Fe2+ kg TS−1, while maintaining constant pH 3, L/S 5 and room temperature. The chemical treatment enhanced the stability, reducing the oxygen uptake rate from 4.63 to 2.57 g O2 kg VS−1 h−1. Moreover, the germination index increased from 37 to 99.9 %, which means the treatment yielded a non-phytotoxic product. The outcomes of the present study are promising and open a new pathway for the Fenton peroxidation in semi-solid processes since this fast method can be very competitive when compared with the slow composting technology.


Digestate Chemical stabilisation Fenton Iron nanoparticles Anaerobic digestion 



This work is funded by the European Regional Development Fund (ERDF) through COMPETE—Operational Programme for Competitiveness Factors (OPCF), and by Portuguese National funds through the FCT—Fundação para a Ciência e a Tecnologia, under the Project PTDC/AGR AAM/101643/2008 NanoDC. R.C. Martins gratefully acknowledges the FCT for the financial support under the Post-Doc Grant (SFRH/BPD/72200/2010). C. Dias-Ferreira gratefully acknowledges the FCT—Fundação para a Ciência e a Tecnologia for financial support (SFRH/BPD/100717/2014). The authors acknowledge the valuable analytical contribution of Prof. Luís Miguel Castro.


  1. 1.
    COM: 398: Towards a Circular Economy: A Zero Waste Programme for Europe (2014)Google Scholar
  2. 2.
  3. 3.
    DEFRA Report, Mechanical Biological Treatment of Municipal Solid Waste, Department for Environment, Food and Rural Affairs, UK (2007)Google Scholar
  4. 4.
    Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81, 577–583 (2010)CrossRefGoogle Scholar
  5. 5.
    Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: part 2, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valor. 2(2), 113–126 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Banks, C.J., Heaven, S.: Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manag. 104, 166–174 (2012)CrossRefGoogle Scholar
  7. 7.
    Massaccesi, L., Sordi, A., Micale, C., Cucina, M., Zadra, C., Di Maria, F., Gigliotti, G.: Chemical characterisation of percolate and digestate during the hybrid solid anaerobic digestion batch process. Process Biochem. 48, 1361–1367 (2013)CrossRefGoogle Scholar
  8. 8.
    VALORGAS Project Report: D6.2: Evaluation of the quality, biosecurity and agronomic usefulness of digestates from different digester trials (2013)Google Scholar
  9. 9.
    Haug, R.T.: The Practical Handbook of Compost Engineering. CRC-Press, USA (1993)Google Scholar
  10. 10.
    Soares, M.A., Quina, M.J., Quinta-Ferreira, R.: Co-composting of eggshell waste in self-heating reactors: monitoring and end product quality. Bioresour. Technol. 148, 293–301 (2013)CrossRefGoogle Scholar
  11. 11.
    Meyer-Kohlstock, D., Hädrich, G., Bidlingmaier, W., Kraft, E.: The value of composting in Germany—economy, ecology, and legislation. Waste Manag 33, 536–539 (2013)CrossRefGoogle Scholar
  12. 12.
    Neyens, E., Baeyens, J.: A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 98, 33–50 (2003)CrossRefGoogle Scholar
  13. 13.
    Bautista, P., Mohedano, A., Casas, J., Zazo, J., Rodriguez, J.: An overview of the application of Fenton oxidation to industrial wastewaters treatment. J. Chem. Technol. Biotechnol. 83, 1323–1338 (2008)CrossRefGoogle Scholar
  14. 14.
    Buyukkamaci, N.: Biological sludge conditioning by Fenton’s reagent. Process Biochem. 39, 1503–1506 (2004)CrossRefGoogle Scholar
  15. 15.
    Liu, H., Yang, J., Shi, Y., Li, Y., He, S., Yang, C., Yao, H.: Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders. Chemosphere 88, 235–239 (2012)CrossRefGoogle Scholar
  16. 16.
    Hu, L.-F., Long, Y.-Y., Feng, H.-J., Yao, J., Fang, C.-R., Shen, D.-S.: A new hazardous solid waste detoxication method: semi-solid Fenton process (SSFP). Water Air Soil Pollut. 212, 3–12 (2010)CrossRefGoogle Scholar
  17. 17.
    Hu, L.-F., Feng, H.-J., Long, Y.-Y., Zheng, Y.-G., Fang, C.-R., Shen, D.-S.: Effect of liquid-to-solid ratio on semi-solid Fenton process in hazardous solid waste detoxication. Waste Manag 31, 124–130 (2011)CrossRefGoogle Scholar
  18. 18.
    Beneduci, A., Costa, I., Chidichimo, G.: Use of iron(II) salts and complexes for the production of soil amendments from organic solid wastes. Int. J. Chem. Eng. (2012). doi: 10.1155/2012/701728
  19. 19.
    Gea, T., Barrena, R., Artola, A., Sánchez, A.: Monitoring the biological activity of the composting process: oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ). Biotechnol. Bioeng. 88(4), 520–527 (2004)CrossRefGoogle Scholar
  20. 20.
    Adani, F., Ubbiali, C., Generini, P.: The determination of biological stability of composts using the Dynamic Respiration Index: the results of experience after two years. Waste Manag 26, 41–48 (2006)CrossRefGoogle Scholar
  21. 21.
    Wichuk, K.M., McCartney, D.: Compost stability and maturity evaluation—a literature review. Can. J. Civ. Eng. 37, 1505–1523 (2010)CrossRefGoogle Scholar
  22. 22.
    Barrena, R., Gea, T., Ponsá, S., Ruggieri, L., Artola, A., Font, A., Sánchez, A.: Categorizing raw organic material biodegradability via respiration activity measurement: a review. Compost Sci. Util. 19, 105–113 (2011)CrossRefGoogle Scholar
  23. 23.
    Martins, R.C., Lopes, D.V., Quina, M.J., Quinta-Ferreira, R.: Treatment improvement of urban landfill leachates by Fenton-like process using ZVI. Chem. Eng. J. 192, 219–225 (2012)CrossRefGoogle Scholar
  24. 24.
    Crane, R.A., Scott, T.B.: Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 211–212, 112–125 (2012)CrossRefGoogle Scholar
  25. 25.
    Yan, W., Lien, H.-L., Koel, B.E., Zhang, W.-X.: Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ. Sci. Processes Impacts 15, 63–77 (2013)CrossRefGoogle Scholar
  26. 26.
    Gomes, H.I., Fan, G., Mateus, E.P., Dias-Ferreira, C., Ribeiro, A.B.: Assessment of combined electro-nano remediation of molinate contaminated soil. Sci. Total Environ. 493, 178–184 (2014)CrossRefGoogle Scholar
  27. 27.
    Gomes, H.I., Dias-Ferreira, C., Ottosen, L.M., Ribeiro, L.M.: Electrodialytic remediation of PCB contaminated soil with iron nanoparticles and two different surfactants. J. Colloid Interface Sci. 433, 189–195 (2014)CrossRefGoogle Scholar
  28. 28.
    Wang, C.-B., Zhang, W.-X.: Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997)CrossRefGoogle Scholar
  29. 29.
    American Public Health Association: Standard methods for the examination of water and wastewater. American Public Health Association, Washington (1985)Google Scholar
  30. 30.
    Test Methods for the Examination of Composting and Compost (TMECC). The Composting Council Research and Education Foundation (2001)Google Scholar
  31. 31.
    Trautmann, N.M., Krasny, M.E.: Composting in the classroom: scientific inquiry for high school students. Kendall/Hunt Publishing Company, Dubuque (1997)Google Scholar
  32. 32.
    Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)zbMATHGoogle Scholar
  33. 33.
    Zhu, N.M., Qiang-Li, Guo, X.J., Hui-Zhang, Yu-Deng.: Sequential extraction of anaerobic digestate sludge for the determination of partitioning of heavy metals. Ecotoxicol. Environ. Saf. 102, 18–24 (2014) Google Scholar
  34. 34.
    Zucconi, F., Peram, A., Forte, M., De Bertolidi, M.: Evaluating toxicity of immature compost. BioCycle 22, 54–56 (1981)Google Scholar
  35. 35.
    Solid Waste Management, vol. 1. United Nations Environment Programme (2005)Google Scholar
  36. 36.
    Erden, G., Filibeli, A.: Effects of Fenton pre-treatment on waste activated sludge properties. Clean-Soil Air Water 39, 626–632 (2011)CrossRefGoogle Scholar
  37. 37.
    Droussi, Z., D’orazio, V., Provenzano, M.R., Hafidi, M., Ouatmane, A.: Study of the biodegradation and transformation of olive-mill residues during composting using FTIR spectroscopy and differential scanning calorimetry. J. Hazard. Mater. 164, 1281–1285 (2009)CrossRefGoogle Scholar
  38. 38.
    Grube, M., Lin, G., Lee, H., Kokorevicha, S.: Evaluation of sewage sludge-based compost by FT-IR spectroscopy. Geoderma 130, 324–333 (2006)CrossRefGoogle Scholar
  39. 39.
    Provenzano, M., Iannuzzi, G., Fabbri, C., Senesi, N.: Qualitative characterization and differentiation of digestates from different biowastes using FTIR and fluorescence spectroscopies. J. Environ. Protect. 2, 83–89 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. J. Quina
    • 1
  • D. V. Lopes
    • 1
  • L. G. Cruz
    • 1
  • J. Andrade
    • 1
  • R. C. Martins
    • 1
  • L. M. Gando-Ferreira
    • 1
  • C. Dias-Ferreira
    • 2
    • 3
  • R. M. Quinta-Ferreira
    • 1
  1. 1.CIEPQPF - Research Centre on Chemical Processes Engineering and Forest Products, Department of Chemical EngineeringUniversity of CoimbraCoimbraPortugal
  2. 2.CERNAS - Research Centre for Natural Resources, Environment and Society, Escola Superior Agrária de CoimbraInstituto Politécnico de CoimbraCoimbraPortugal
  3. 3.Materials and Ceramic Engineering Department, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations