Waste and Biomass Valorization

, Volume 6, Issue 5, pp 891–897 | Cite as

Green Hydrolysis as an Emerging Technology to Turn Wool Waste into Organic Nitrogen Fertilizer

  • M. ZoccolaEmail author
  • A. Montarsolo
  • R. Mossotti
  • A. Patrucco
  • C. Tonin
Original Paper


Management of waste wool is a problem related to sheep farming and butchery in Europe. Since the primary role of European flock is meat production, sheep are crossbreds not graded for fine wool production. Their wool is very coarse and contains a lot of kemps (dead fibres), so that it is practically unserviceable for textile uses, and represents a by-product which is mostly disposed off. Green hydrolysis using superheated water is an emerging technology to turn waste wool into amendment-fertilizers for the management of grasslands and other cultivation purposes. In this way wool keratin (the wool protein) is degraded into simpler compounds, tailoring the release speed of nutrients to plants. Wool, when added to the soil, increases the yield of grass grown, absorbs and retains moisture very effectively and reduces run off of contaminants such as pesticides. Moreover, the closed-loop cycle grass–wool–grass is an efficient form of recycling, because the wool-grass step is solar powered and grazing sheep increases soil carbon sequestration on grasslands and fertilisation, if not over-used, can enhance the carbon sequestration rate. Economical results of using hydrolysed wool as a fertilizer are expected from the increase of the management yield and the extension of the pasture lands that may contribute to employment and profit of sheep farming, increase European sheep population, and reduce European dependency of imported meat which is forecast to rise in the next years.


Wool waste Management Hydrolysis Fertilisers Industrial symbiosis 



Authors would like to thank the European Commission for the financial support of the project Life+ 12 ENV/IT000439 GreenWoolF-Green hydrolysis conversion of wool wastes into organic nitrogen fertilisers.


  1. 1.
    Sargison, N.: Sheep flock health: a planned approach. Blackwell Publishing Ltd, Oxford (2009)Google Scholar
  2. 2.
    Patrucco, A., Zoccola, M., Consonni, R., Tonin, C.: Wool cortical cell-based porous films. Text. Res. J. 83(15), 1563–1573 (2013)CrossRefGoogle Scholar
  3. 3.
    Tachibana, A., Furuta, Y., Takeshima, H., Tanabe, T., Yamauchi, Y.: Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J. Biotechnol. 93, 165–170 (2002)CrossRefGoogle Scholar
  4. 4.
    Yamauchi, A., Yamauchi, K.: Formation and properties of wool keratin films and coating in protein-based films and coating, Gennadios, a. CRC Press, Boca Raton (2002)Google Scholar
  5. 5.
    Aluigi, A., Corbellini, A., Rombaldoni, F., Zoccola, M., Canetti, M.: Morphological and structural investigation of wool-derived keratin nanofibres crosslinked by thermal treatment. Int. J. Biol. Macromol. 57, 30–37 (2013)CrossRefGoogle Scholar
  6. 6.
    Aluigi, A., Corbellini, A., Rombaldoni, F., Mazzuchetti, G.: Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Text. Res. J. 83(15), 1574–1586 (2013)CrossRefGoogle Scholar
  7. 7.
    Penkova, S., Garvanska, R.: Development and investigation of highly-efficient fibrous/wood waste absorbers for removing waste oil. Tekstil i Obleklo 9–10, 13–15 (2003)Google Scholar
  8. 8.
    Bosia, D., Giordano, R., Patrucco, A., Ramella Pollone, F., Savio, L., Tonin, C.: “Processo di lavorazione della lana, materiali di lana prodotti con detto processo e articoli comprendenti detti materiali di lana”. Patent No. 0001410156 del 05/09/2014Google Scholar
  9. 9.
    Bacci, L., Camilli, F., Drago, S., Magli, M., Vagnoni, E., Mauro, A., Predieri, S.: Sensory evaluation and instrumental measurements to determine tactile properties of wool fabics. Text. Res. J. 82, 1430–1441 (2012)CrossRefGoogle Scholar
  10. 10.
    Yordanov, D., Betcheva, R., Yotova, L.: Biotech treatment of effluent from combined enzymatic-ultrasound scouring of raw wool. Eur. J. Chem. 1, 12–14 (2010)CrossRefGoogle Scholar
  11. 11.
    Schoen, E.J., Bagley, D.M.: Biogas production and feasibility of energy recovery systems for anaerobic treatment of wool-scouring effluent. Resour. Conserv. Recycl. 62, 21–30 (2012)CrossRefGoogle Scholar
  12. 12.
    Von Bergen, W.: Wool handbook, vol. 1, 3rd edn. Wiley, New York-London (1963)Google Scholar
  13. 13.
    McNeil, S.J., Sunderland, M.R., Zaitseva, L.I.: Closed-loop wool carpet recycling. Resour. Conserv. Recycl. 51(1), 220–224 (2007)CrossRefGoogle Scholar
  14. 14.
    Das, K.C., Tollner, E.W., Annis, P.A.: Bioconversion of wool industry solid waste to value-added products. In: 2nd Annual Conference on Recycling of Fibrous Textile and Carpet Waste, Conference Proceedings, Atlanta GA (1997)Google Scholar
  15. 15.
    MacLaren, J.A., Milligan, B.: Wool science. The chemical reactivity of the wool fibre. Science Press, Marrickville NSW (1981)Google Scholar
  16. 16.
    Jenkins, A.D., Wolfram, L.J.: The chemistry of the reaction between tetrakis (hydroxymethyl) phosphonium chloride and keratin. J. Soc. Dyers Colour. 79, 55 (1963)CrossRefGoogle Scholar
  17. 17.
    Lucas, F.S., Broennimann, O., Febbraro, I., Heeb, P.: High diversity among feather-degrading bacteria from a dry meadow soil. Microb. Ecol. 45, 282–290 (2003)CrossRefGoogle Scholar
  18. 18.
    Gradisar, H., Friedrich, J., Krizaj, I., Jerala, R.: Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71, 3420–3426 (2005)CrossRefGoogle Scholar
  19. 19.
    Daroit, D.J., Corría, A.P., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodeterior. Biodegradation 63, 358–363 (2009)CrossRefGoogle Scholar
  20. 20.
    Queiroga, A.C., Pintado, M.E., Malcata, F.X.: Potential use of wool-associated Bacillus species for biodegradation of keratinous materials. Int. Biodeterior. Biodegradation 70, 60–65 (2012)CrossRefGoogle Scholar
  21. 21.
    Fang, Z., Zhang, J., Liu, B., Du, G., Chen, J.: Biodegradation of wool waste and keratinase production in scale-up fermenter with different strategies by Stenotrophomonas maltophilia BBE11-1. Bioresour. Technol. 140, 286–291 (2013)CrossRefGoogle Scholar
  22. 22.
    Nustorova, M., Braikova, D., Gousterova, A., Vasileva-Tonkova, E., Peter Nedkov, P.: Chemical, microbiological and plant analysis of soil fertilized with alkaline hydrolysate of sheep’s wool waste. World J. Microbiol. Biotechnol. 22, 383–390 (2006)CrossRefGoogle Scholar
  23. 23.
    Tonin, C., Zoccola, M., Aluigi, A., Varesano, A., Montarsolo, A., Vineis, C., Zimbardi, F.: Study on the conversionof wool keratin by steam explosion. Biomacromolecules 7, 3499–3504 (2006)CrossRefGoogle Scholar
  24. 24.
    Zoccola, M., Aluigi, A., Patrucco, A., Vineis, C., Forlini, F., Locatelli, P., Sacchi, M.C., Tonin, C.: Microwave assisted chemical free hydrolysis of wool keratin. Text. Res. J. 82, 2006–2018 (2012)CrossRefGoogle Scholar
  25. 25.
    Brandelli, A.: Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol. 1, 105–116 (2008)CrossRefGoogle Scholar
  26. 26.
    Komnitsas, K., Zaharaki, D.: Assessment of human and ecosystem risk due to agricultural waste compost application on soils: a review. Environ. Forensics 15(4), 312–328 (2014)CrossRefGoogle Scholar
  27. 27.
    Zoccola, M., Aluigi, A., Tonin, C.: Characterisation of keratin biomass from butchery and wool industry wastes. J. Mol. Struct. 1–3, 35–40 (2009)CrossRefGoogle Scholar
  28. 28.
    Hopkins, A., Holz, B.: Grassland for agriculture and nature conservation: production, quality and multi-functionality. Grassl. Sci. Eur. 10, 15–29 (2005)Google Scholar
  29. 29.
    Lee, J.: Forages. Livest. Prod. Sci. 19, 13–46 (1988)CrossRefGoogle Scholar
  30. 30.
    Smit, H.J., Metzger, M.J., Ewert, F.: Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 98, 208–219 (2008)CrossRefGoogle Scholar
  31. 31.
    Leip, A., Weiss, F., Wassenaar, T., Perez, I., Fellmann, T., Loudjani, P., Tubiello, F., Grandgirard, D., Monni, S., Biala, K.: Evaluation of the livestock sector’s contribution to the EU greenhouse gas emissions (GGELS)—final report. European Commission, Joint Research Centre, Belgium (2010)Google Scholar
  32. 32.
    Vipond, J.E.: The future of the UK sheep industry. J. R. Agric. Soc. Engl. 171, 45–48 (2011)Google Scholar
  33. 33.
    Weiss, F., Leip, A.: Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agric. Ecosyst. Environ. 149, 124–134 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. Zoccola
    • 1
    Email author
  • A. Montarsolo
    • 1
  • R. Mossotti
    • 1
  • A. Patrucco
    • 1
  • C. Tonin
    • 1
  1. 1.National Research CouncilInstitute for Macromolecular StudiesBiellaItaly

Personalised recommendations