Waste and Biomass Valorization

, Volume 6, Issue 2, pp 201–207 | Cite as

Dominance of Hydrogenotrophic Methanogens at the Peak of Biogas Production in Thalassic Digesters

  • Gian Powell B. Marquez
  • Wolfgang T. Reichardt
  • Rhodora V. Azanza
  • Deo Florence L. Onda
  • Arturo O. Lluisma
  • Marco Nemesio E. Montaño
Short Communication

Abstract

Marine biomasses used in biogasification system are usually treated as terrestrial feedstock after salt removal. However, biogas production of sea wrack biomass run under thalassic (marine) conditions, and seeded with different inocula [cow manure (CM), marine sediment (MS) and sea wrack-associated (SWA) microflora] showed the potential for cheaper alternative to freshwater utilization (terrestrial conditions). To understand how methane yield is affected by the different inoculants under thalassic conditions, methanogenic communities in these digesters (CM, MS, SWA) were quantified using double-labeled oligonucleotide probes to a modified fluorescence in situ hybridization at the peak of biogas production. Total targeted methanogens were highest in SWA (1.51 ± 0.53 × 107 cells ml−1) while lowest in CM (1.79 ± 0.20 × 106 cells ml−1). Among all types of targeted methanogens, hydrogenotrophs (Methanobacteriales and Methanomicrobiales) dominated in all digesters (CM 73.2 ± 7 %, MS 58.4 ± 8.0 %, SWA 61.2 ± 5.4 %). Moreover, MS showed mixotrophic Methanosarcinaceae (30.2 ± 8.1 %) co-dominance, suggesting that their population could have influenced the higher methane yield in MS.

Keywords

Fluorescence in situ hybridization Methane Methanogens Seaweed Thalassic 

References

  1. 1.
    Rademacher, A., Zakrzewski, M., Schlüter, A., Schönberg, M., Szczepanowski, R., Goesmann, A., Pühler, A., Klocke, M.: Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol. Ecol. 79, 785–799 (2012)CrossRefGoogle Scholar
  2. 2.
    Sakai, S., Imachi, H., Hanada, S., Ohashi, A., Harada, H., Kamagata, Y.: Methanocella paludicola gen. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int. J. Syst. Evol. Microbiol. 58, 929–936 (2008)CrossRefGoogle Scholar
  3. 3.
    Raskin, L., Stromley, J.M., Rittmann, B.E., Stahl, D.A.: Group-specific 16S ribosomal-RNA hybridization probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240 (1994)Google Scholar
  4. 4.
    Karakashev, D., Batstone, D.J., Trably, E., Angelidaki, I.: Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl. Environ. Microbiol. 72, 5138–5141 (2006)CrossRefGoogle Scholar
  5. 5.
    Nettmann, E., Bergmann, I., Pramschufer, S., Mundt, K., Plogsties, V., Herrmann, C., Klocke, M.: Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plant. Appl. Environ. Microbiol. 76, 2540–2548 (2010)CrossRefGoogle Scholar
  6. 6.
    Santegoeds, C.M., Damgaard, L.R., Hesselink, G., Zopfi, J., Lens, P., Muyzer, G., de Beer, D.: Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses. Appl. Environ. Microbiol. 65, 4618–4629 (1999)Google Scholar
  7. 7.
    Vavilin, V.A., Qu, X., Mazeas, L.: Methanosarcina as the dominant aceticlastic methanogens during mesophilic anaerobic digestion of putrescible waste. Antonie Van Leeuwenhoek 94, 593–605 (2008)CrossRefGoogle Scholar
  8. 8.
    Pope, P.B., Vivekanand, V., Eijsink, V.G.H., Horn, S.J.: Microbial community structure in a biogas digester utilizing the marine energy crop, Saccharina latissima. 3 Biotech (2012). doi:10.1007/s13205-012-0097-x
  9. 9.
    Marquez, G.P.B., Reichardt, W.T., Azanza, R.V., Klocke, M., Montaño, M.N.E.: Thalassic biogas production from sea wrack biomass using different microbial seeds: cow manure, marine sediment and sea wrack-associated microflora. Bioresour. Technol. 133, 612–617 (2013)CrossRefGoogle Scholar
  10. 10.
    Daims, H., Stoecker, K., Wagner, M.: Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn, A.M., Smith, C.J. (eds.) Advanced methods in molecular microbial ecology, pp. 213–239. Bios-Garland, Abingdon (2005)Google Scholar
  11. 11.
    Stahl, D.A., Amann, R.: Development and application of nucleic acid probes. In: Stackebrandt, E., Goodfellow, M. (eds.) Nucleic acid techniques in bacterial systematics, pp. 205–248. John Wiley & Sons Ltd., Chichester (1991)Google Scholar
  12. 12.
    Crocetti, G., Murto, M., Bjornsson, L.: An update and optimization of oligonucleotide probes targeting methanogenic Archaea for use in fluorescence in situ hybridization (FISH). J. Microbiol. Methods 65, 194–201 (2006)CrossRefGoogle Scholar
  13. 13.
    Loy, A., Horn, M., Wagner, M.: ProbeBase: an online resource for rRNA-targeted oligonucleotides probes. Nucleic Acids Res. 31, 514–516 (2003)CrossRefGoogle Scholar
  14. 14.
    Marquez, G.P.B., Santiañez, W.J.E., Trono Jr, G.C., Montaño, M.N.E., Araki, H., Takeuchi, H., Hasegawa, T.: Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew. Sustain. Energy Rev. 38, 1056–1068 (2014)CrossRefGoogle Scholar
  15. 15.
    Shah, F.A., Mahmood, Q., Shah, M.M., Pervez, A., Asad, S.A.: Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci. World J. (2014). doi:10.1155/2014/183752
  16. 16.
    Kumar, S., Dagar, S.S., Mohanty, A.K., Sirohi, S.K., Puniya, M., Kuhad, R.C., Sangu, K.P., Griffith, G.W., Puniya, A.K.: Enumeration of methanogens with a focus on fluorescence in situ hybridization. Naturwissenschaften 98, 457–472 (2011)CrossRefGoogle Scholar
  17. 17.
    Lowe, S.E., Jain, M.K., Zeikus, J.G.: Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57, 451–509 (1993)Google Scholar
  18. 18.
    Zinder, S.H.: Physiological ecology of methanogens. In: Ferry, J.G. (ed.) Methanogens: ecology, physiology, biochemistry and genetics, pp. 128–206. Springer, USA (1993)CrossRefGoogle Scholar
  19. 19.
    Traversi, D., Villa, S., Acri, M., Pietrangeli, B., Degan, R., Gilli, G.: The role of different methanogen groups evaluated by real-time qPCR as high-efficiency bioindicators of wet anaerobic co-digestion of organic waste. AMB Express (2011). doi:10.1186/2191-0855-1-28
  20. 20.
    Imachi, H., Aoi, K., Tasumi, E., Saito, Y., Yamanaka, Y., Saito, Y., Yamaguchi, T., Tomaru, H., Takeuchi, R., Morono, Y., Inagaki, F., Takai, K.: Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J. 5, 1913–1925 (2011)CrossRefGoogle Scholar
  21. 21.
    Mackie, R.I., Bryant, M.P.: Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and CO2 to methanogenesis in cattle waste at 40 and 60°C. Appl. Environ. Microbiol. 41, 1363–1373 (1981)Google Scholar
  22. 22.
    Kadam, P.C., Godbole, S.H., Ranade, D.R.: Isolation of methanogens from Arabian sea sediments and their salt tolerance. FEMS Microbiol. Lett. 62, 343–347 (1989)CrossRefGoogle Scholar
  23. 23.
    Pflüger, K., Baumann, S., Gottschalk, G., Lin, W., Santos, H., Müller, V.: Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of Nε-acetyl-β-lysine and growth at high salinity. Appl. Environ. Microbiol. 69, 6047–6055 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Gian Powell B. Marquez
    • 2
  • Wolfgang T. Reichardt
    • 1
  • Rhodora V. Azanza
    • 1
  • Deo Florence L. Onda
    • 1
  • Arturo O. Lluisma
    • 1
  • Marco Nemesio E. Montaño
    • 1
  1. 1.The Marine Science InstituteUniversity of the Philippines, DilimanQuezon CityPhilippines
  2. 2.Hasegawa’s Laboratory, Department of Aerospace Engineering, Graduate School of Engineering, EcoTopia Science InstituteNagoya UniversityNagoyaJapan

Personalised recommendations