Waste and Biomass Valorization

, Volume 5, Issue 6, pp 963–971 | Cite as

Factors Affecting Bioethanol Production from Lignocellulosic Biomass (Calliandra calothyrsus)

Original Paper

Abstract

India is in need of renewable fuels for transportation and power generation applications. Bio-ethanol, a second generation fuel is considered as one of the most important promising alternative fuel for both petrol and diesel engine applications. The molasses feedstock is the main source for ethanol production in India, but it is hardly sufficient to meet the current growing demand. Lignocellulosic biomass is an alternative, renewable and sustainable feedstock to meet the demand of ethanol. In the present study, experiments were carried out with the main objective of bio-ethanol production from Calliandra calothyrsus shrub, a potential lignocellulosic raw material for cellulose-to-bioethanol process. In view of this, C. calothyrsus biomass was pretreated with hydrothermal explosion using hot water, a method prior to hydrolysis process to produce fermentable sugars. Based on the experimental results, 2.67 and 1.72 g/L glucose was obtained with H2SO4 and HCl acid hydrolysis respectively for pretreated biomass. Also the present research work involves experimental investigations of bioethanol production from C. calothyrsus using batch fermentation. The results revealed that pH 4.5, temperature 30 °C and incubation period of 72 h were found to be favorable for producing maximum bioethanol yield. Further, study on hydrolysis was extended using enzyme, that resulted in 16.5 and 10.25 g/L glucose with and without pretreatment respectively.

Keywords

Calliandra calothyrsus Bioethanol Biodiesel Saccharomyces cerevisiae 

References

  1. 1.
    Wyman, C.E.: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25, 153–157 (2007)CrossRefGoogle Scholar
  2. 2.
    Lynd, L.R., Laser, Mark S., Bransby, David, Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J., Wyman, C.E.: Nat. Biotechnol. 26(2), 169–172 (2008)CrossRefGoogle Scholar
  3. 3.
    Park, S.H., Yoon, S.H., Suh, H.K., Lee, C.S.: Effect of the temperature variation on properties of biodiesel and biodiesel- ethanol blend fuels. Oil Gas Sci. Technol. Rev. IFP 63, 737–745 (2008)CrossRefGoogle Scholar
  4. 4.
    Xingcai, L., Zhen, H., Wugao, Z., Degang, L.: The influence of ethanol additives on the performance and combustion characteristics of diesel engines. Combust. Sci. Technol. 176, 1309–1329 (2004)CrossRefGoogle Scholar
  5. 5.
    Chen, H., Shuai, S., Wang, J.: Study on combustion characteristics and PM emission of diesel engines using ester-ethanol-diesel blended fuels. Proc. Combust. Inst 31, 2981–2989 (2007)CrossRefGoogle Scholar
  6. 6.
    Li, De-gang, Huang Zhen, Lu, Xingcai, Yang Jian-guang: Physicochemical properties of ethanol diesel blend fuels on performance and emission of diesel engine. Renewable Energy 30(6), 967–976 (2005)CrossRefGoogle Scholar
  7. 7.
    Hansen, A.C., Zhang, Q., Lyne, P.W.L.: Ethanol-diesel fuel blends-a review. Bioresour. Technol. 96, 277–285 (2005)CrossRefGoogle Scholar
  8. 8.
    Corkwell, K.C., Jackson, M.M., Daly, D.T.: Review of exhaust emissions of compression ignition engines operating on E diesel fuel blends, SAE International Paper no.: 2003-01-3283 (2003)Google Scholar
  9. 9.
    Banapurmath, N.R., Tewari, P.G., Yaliwal, V.S.: Fuel efficiency—improving fuel efficiency of compression ignition engines fuelled with vegetable oil, Nova Science Publishers, Inc., ISBN: 978-1-61122-194-7: 2–36 (2010)Google Scholar
  10. 10.
    Yaliwal, V.S., Nataraja, K. M., Banapurmath, N. R., Tewari P.G.: Honge oil methyl ester and producer gas-fuelled dual-fuel engine operated with varying compression ratios. International Journal of Sustainable Engineering, Article in press. doi:10.1080/19397038.2013.837108 (2013)
  11. 11.
    Mabee, W. E., Saddler, J. N.: Ethanol from Lignocellulosics: Policy options to support bioethanol production, IEA Task 39, Forest Products Biotechnology, University of British Columbia. Report T39-P2, 1–16 (2005)Google Scholar
  12. 12.
    Mitchell, D.: A note of rising food prices, Policy research working paper 4682. Development Prospects Group, The World Bank, Washington D.C., USA, 1–21 (2008)Google Scholar
  13. 13.
    Wheals, A.E., Bassoc, L.C., Alves, D.M.G., Amorimd, H.V.: Fuel ethanol after 25 years. Trends Biotechnol. 17(12), 482–487 (1999)CrossRefGoogle Scholar
  14. 14.
    Grad, P.: Biofuelling Brazil—an overview of the bioethanol success story in Brazil. Biofuels 7(3), 56–59 (2006)Google Scholar
  15. 15.
    Dien, B.S., Li, X.L., Iten, L.B., Jordan, D.B., Nichols, N.N., Bryan, O., Cotta, M.A.: Enzymatic saccharification of hot-water pretreated corn fiber for production of mono-saccharides. Enzyme Microb. Technol. 39(5), 1137–1144 (2006)CrossRefGoogle Scholar
  16. 16.
    Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J., Lynd, L.R.: A comparison of liquid hot water and steam pretreatments of sugar cane bagase for conversion to ethanol. Bioresour. Technol. 81, 33–44 (2002)CrossRefGoogle Scholar
  17. 17.
    Xu, J., Thomsen, M.H., Thomsen, A.B.: Pretreatment on corn stover with low concentration of formic acid. J. Microbiol. Biotechnol. 19(8), 845–850 (2009)Google Scholar
  18. 18.
    Muralidharan, M., Mathew, P., Thariyan Sumit Roy, Subrahmanyam, J. P., Subbarao P. M. V.: Use of Pongamia Biodiesel in CI Engines for Rural Application. 3rd International Conference on Automotive and Fuel Technology, Society of Automotive Engineer Paper No.: 2004-28-0030, 1–8 (2004)Google Scholar
  19. 19.
    Bjerre, A.B., Olesen, A.B., Fernqvist, T., Ploger, A., Schmidt, A.S.: Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioenergy 49(5), 568–577 (1996)CrossRefGoogle Scholar
  20. 20.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)CrossRefGoogle Scholar
  21. 21.
    Perez, J.A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M.J., Manzanares, P.: Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87, 3640–3647 (2008)CrossRefGoogle Scholar
  22. 22.
    Nigam, P.S., Gupta, N., Anthwal, A.: Pre-treatment of agro-industrial residues. In: Nigam, P.S., Pandey, A. (eds.) Biotechnology foragro-industrial residues utilization, 1st edn, pp. 13–33. Springer publications, Netherlands (2009)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y.H.: Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Ind. Microbiol. Biotechnol. 35, 367–375 (2008)CrossRefGoogle Scholar
  24. 24.
    Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100(1), 10–18 (2009)CrossRefGoogle Scholar
  25. 25.
    Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Ind. Microbiol. Biotechnol. 35, 377–391 (2008)CrossRefGoogle Scholar
  26. 26.
    Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)CrossRefGoogle Scholar
  27. 27.
    Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2(1), 26–40 (2008)CrossRefGoogle Scholar
  28. 28.
    Sun, F.B., Cheng, H.Z.: Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J. Chem. Technol. Biotechnol. 82, 1039–1044 (2007)CrossRefGoogle Scholar
  29. 29.
    Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011)CrossRefGoogle Scholar
  30. 30.
    Laureano-Perez, L., Teymouri, F., Alizadeh, H., Dale, B.E.: Understanding factors that limit enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 121(124), 1081–1099 (2005)CrossRefGoogle Scholar
  31. 31.
    Balan, V., Bals, B., Chundawat, S.P., Marshall, D., Dale, B.E.: Lignocellulosic biomass pretreatment using AFEX. Methods Mol. Biol. 581, 61–77 (2009). doi:10.1007/978-1-60761-214-8_5 CrossRefGoogle Scholar
  32. 32.
    Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K.: Bioethanol production from agricultural wastes: an overview. Renewable Energy 37(1), 19–27 (2012)CrossRefGoogle Scholar
  33. 33.
    Mosier, N.S., Ladisch, C.M., Ladich, M.R.: Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. 6(79), 610–618 (2002)CrossRefGoogle Scholar
  34. 34.
    Kim, Y., Mosier, N.S., Ladisch, M.R.: Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol. Prog. 25(2), 340–348 (2009)CrossRefGoogle Scholar
  35. 35.
    Yu, G., Yano, S., Inoue, H., Inoue, S., Endo, T., Sawayama, S.: Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl. Biochem. Biotechnol. 160(2), 539–551 (2010)CrossRefGoogle Scholar
  36. 36.
    Sukumaran, R.K., Surender, V.J., Sindhu, R., Binod, P., Janu, K.U., Sajna, K.V., Rajasree, K.P., Pandey, A.: Lignocellulosic ethanol in India-prospects, challenges and feedstock availability. Bioresour. Technol. 101, 4826–4833 (2010)CrossRefGoogle Scholar
  37. 37.
    Ravindranath, N.H., Somashekar, H.I., Nagaraja, M.S., Sudha, P., Sangeetha, G., Bhattacharya, S.C., Abdul Salam, P.: Assessment of sustainable nonplantation biomass resources potential for energy in India. Biomass Bioenergy 29(3), 178–190 (2005)CrossRefGoogle Scholar
  38. 38.
    Goering, H. K., Van Soest, P.J.: Forage fiber analysis (apparatus, reagents, procedures and some applications). USDA Agricultural Handbook No.: 379 (1970)Google Scholar
  39. 39.
    Romero, I., Ruiz, E., Castro, E., Maya, M.: Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Design 88, 633–671 (2010)CrossRefGoogle Scholar
  40. 40.
    Larsson, S., Palmqvist, E., Hahn-Ha¨gerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., Nilvebrant, N.: The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24, 151–159 (1999)CrossRefGoogle Scholar
  41. 41.
    Lenihan, P., Orozco, A., O’nill, E., Ahmad, M.N.M., Rooney, D.W., Walker, G.M.: Dilute acid hydrolysis of lignocellulosic biomass. J. Chem. Eng. 156, 395–410 (2010)CrossRefGoogle Scholar
  42. 42.
    Reed, G.: Production of fermentation alcohol as a fuel source. In: Prescott & Dunn’s Industrial Microbiology, fifth ed. Reprinted by CBS Publishers, New Delhi, 835–860 (2002)Google Scholar
  43. 43.
    Pramanik, K.: Parametric studies on batch alcohol fermentation using saccharomyces yeast extracted from toddy. J. Chin. Inst. Chem. Eng. 34(4), 487–492 (2003)Google Scholar
  44. 44.
    Olaniran, A.O., Maharaj, Y.R., Pillay, B.: Effects of fermentation temperature on the composition of beer volatile compounds, organoleptic quality and spent yeast density. Electron. J. Biotechnol. 14(2), 5 (2011)CrossRefGoogle Scholar
  45. 45.
    Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J., Schols, H.A.: Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98, 2034–2042 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentSDM College of Engineering and TechnologyDharwadIndia
  2. 2.Mechanical Engineering DepartmentSDM College of Engineering and TechnologyDharwadIndia
  3. 3.Chemical Engineering DepartmentBabuji Institute of Engineering and TechnologyDavangereIndia
  4. 4.Mechanical Engineering DepartmentBVB College of Engineering and TechnologyHubliIndia

Personalised recommendations