Waste and Biomass Valorization

, Volume 5, Issue 4, pp 679–688 | Cite as

Policy Based Scenarios for Waste-to-Energy Use: Swedish Perspective

  • B. Guziana
  • H. Song
  • E. Thorin
  • E. Dotzauer
  • J. Yan
Original Paper


The use of waste for energy purposes becomes increasingly interesting with respect to waste management and the energy systems. The decisions on alternative uses of waste for energy are mainly influenced by different policies, waste management, energy supply and use, as well as technologies. Two important issues, namely, a clear priority of waste prevention in waste management within EU and the growing concern for food losses and food waste at global and national level, shall be carefully considered and addressed. This paper proposes policy based scenarios for waste-to-energy systems with a focus on Sweden and with a broader EU approach. As baseline for the scenario development an inventory of waste-to-energy related policies and goals on international, national, regional and local level as well as inventory of existing scenarios and reports with future trends is made. The main substitute for fossil fuels and the possibilities for renewable energy export are basic elements that define scenarios. Biofuels and electricity are identified as main substitutes for the fossil fuels. A low waste availability level is recommended to be included in sensitivity analysis for scenarios. This paper assumes relative decoupling in Low Waste scenario in 2030, and absolute decoupling first in 2050.


Waste-to-energy Scenario Biofuels Bioenergy Waste prevention Relative and absolute decoupling 



This study was part-financed by the European Union (European Regional development Fund) through the project Regional Mobilizing of Sustainable Waste-to-Energy Production (REMOWE) which is a part of the Baltic Sea Region programme.


  1. 1.
    Münster, M., Meibom, P.: Optimization of use of waste in the future energy system. Energy 36, 1612–1622 (2011)CrossRefGoogle Scholar
  2. 2.
    En sammanhållen klimat och energipolitik—Klimat Prop. 2008/09:162. (In Swedish)Google Scholar
  3. 3.
    En sammanhållen klimat och energipolitik—Energi. Prop. 2008/09:163. (In Swedish)Google Scholar
  4. 4.
    E. Rosenthal, Europe Finds Clean Energy in Trash, but U.S. Lags, The New York Times, (2010)Google Scholar
  5. 5.
    Corti, A., Lombardi, L.: End life tyres: alternative final disposal processes compared by LCA. Energy 29, 2089–2108 (2004)CrossRefGoogle Scholar
  6. 6.
    Murph, J.D., McKeogh, E.: Technical, economic and environmental analysis of energy production for municipal solid waste. Renew. Energy 29, 1043–1057 (2004)CrossRefGoogle Scholar
  7. 7.
    Porteous, A.: Why energy from waste is an essential component of environmentally responsible waste management. Waste Manag. 25, 451–459 (2005)CrossRefGoogle Scholar
  8. 8.
    E. Thorin, E. den Boer, O. Belarus, H. Song. Waste to energy—a review. International conference on applied energy ICAE 2012, July 5–8, (2012) Suzhou, ChinaGoogle Scholar
  9. 9.
    County of Västmanland, Befolkning i Västmanlandslän 2015. Prognoser för länets kommuner 2009–2030, Rapport 2009:10, (2009) (In Swedish)Google Scholar
  10. 10.
    E. Thorin, L. Daianova, B. Guziana, F. Wallin, S. Wossmar, V. Degerfeldt, L. Granath, Current tatus of the aste- to- energy chain in the County of Västmanland, Sweden, Report no: O3.2.1.2 PP, (2011)Google Scholar
  11. 11.
    COM, An Energy Policy for Europe, (2007)Google Scholar
  12. 12.
    EU, A Roadmap for moving to a competitive low carbon economy in 2050, COM 112, (2011)Google Scholar
  13. 13.
    Prime Minister’s Office, A sustainable energy and climate policy for the environment, competitiveness and long-term stability, (2009)Google Scholar
  14. 14.
    Energimyndigheten, Förslag till en sektorsövergripande biogasstrategi, Slutrapport, ER 2010:13; (2010). (In Swedish)Google Scholar
  15. 15.
    County of Västmanland, Climate and energy strategy for the Västmanland County, Rapport 2008:19, (2008) (In Swedish)Google Scholar
  16. 16.
    Agenda 21 Förbundet, Om fossilfritt Västmanland, (Last visited 2011.07.15)
  17. 17.
    Dahlquist, E., Thorin, E., Yan, J.: Alternative pathways to a fossil-fuel free energy system in the Mälardalen region of Sweden. Int. J. Energy Res. 31, 126–1236 (2007)CrossRefGoogle Scholar
  18. 18.
    EU, Waste Framework Directive, Directive 2008/98/EC, (2008)Google Scholar
  19. 19.
    EU, Directive on landfill of wastes, Directive 1999/31/EC, (1999)Google Scholar
  20. 20.
    Swedish EPA, A strategy for sustainable waste management. Sweden’s waste plan, (2005) (In Swedish)Google Scholar
  21. 21.
    From waste management to resource efficiency.Sweden’s Waste Plan 2012–2017. Swedish Environmental Protection Agency (EPA), Report 6560, May (2012)Google Scholar
  22. 22.
    Government, The Swedish environmental objectives–interim targets and action strategies, (2000)Google Scholar
  23. 23.
    Producentansvar för förpackningar (1997:185). (In Swedish)Google Scholar
  24. 24.
    Förordning om skatt på avfall (1999:1218). (In Swedish)Google Scholar
  25. 25.
    Förordning om deponering av avfall (2001:512). (In Swedish)Google Scholar
  26. 26.
    VafabMiljö AB, Avfallsplan 2009–2012, (2009). (In Swedish)Google Scholar
  27. 27.
    BiogasÖst, Food waste became biogas. Five good examples. (2011). (In Swedish)Google Scholar
  28. 28.
    EU, On the Thematic Strategy on the prevention and recycling of waste COM 13, (2011)Google Scholar
  29. 29.
    EU, European Commission DG Environment, Analysis of the evolution of waste reduction and the scope of waste prevention, (2008)Google Scholar
  30. 30.
    J-O. Sunquist, Å.Stenmark, T. Ekwall, Model for future waste generation, IVL Report, (2010)Google Scholar
  31. 31.
    Ch. Ambell, A. Björklund, M. Ljungren Söderlund, Potential för ökad materialåtervinning av hushållsavfall och industriavfall, TRITA-INFRA-FMS 2010:4, (2010). (In Swedish)Google Scholar
  32. 32.
    Sjöström, M., Östblom, G.: Decoupling waste generation from economic growth—A CGE analysis of the Swedish case. Ecol. Econ. 69, 1545–1552 (2010)Google Scholar
  33. 33.
    EU, EU energy trends to 2030. Uppdate 2009, (2010)Google Scholar
  34. 34.
    Swedish Energy Agency, Long-term Forecast for 2008, (2009). (In Swedish)Google Scholar
  35. 35.
    Swedish Energy Agency, Long-term Forecast for (2010, 2011). (In Swedish)Google Scholar
  36. 36.
    J. Gode, E. Särnholm, L. Zetterberg, J. Arnell, T. Zetterberg, Swedish long-term low carbon scenario—Exploratory study on opportunities and barrier, IVL Report, (2010)Google Scholar
  37. 37.
    Profu, Scenarios for development of electricity and energy systems to 2050. Ett underlag för Svensk Energis 2050-studie, (2010) (In Swedish)Google Scholar
  38. 38.
    BusinessGreen Staff. Electric cars to cost more than conventional vehicles until 2030, [2011.09.06]
  39. 39.
    Dalia, S., Jurate, S.: Comparative assessment of future motor vehicles under various climate change mitigation scenarios. Renew. Sustain. Energy Rev. 15, 3833–3838 (2011)CrossRefGoogle Scholar
  40. 40.
    Niklas F. Electric vehicles use in Sweden. Lund Institute of Technology, (2000)Google Scholar
  41. 41.
    Swedish Energy Agency, Kunskapsunderlag angående marknader för elfordon och laddhybrider, ER2009:20. (2009) (In Swedish)Google Scholar
  42. 42.
    IEA, Technology Roadmap–Electrical and plug-in hybrid electrical vehicles, (2009)Google Scholar
  43. 43.
    Swedish Government, (Last visited 2011.07.30]
  44. 44.
    EU, Roadmap to a Single European Transport Area—Towards a competitive and resource efficient transport system, COM 144, (2011)Google Scholar
  45. 45.
    R. Modin, Livsmedelssvinn i hushåll och skolor—en kunskapsöversikt, (2011). (In Swedish)Google Scholar
  46. 46.
    Avfall Sverige, Swedish Waste Management, Preventing of waste with recycling parks. Environmental impacts, Rapport U2011:02, (2011). (In Swedish)Google Scholar
  47. 47.
    Å. Stenmarck, O. J. Hanssen, K. Silvennoinen, J-M. Katajajuuri,. M. Werge, Initiatives on prevention of food waste in the retail and wholesale trades, IVL Report, (2011)Google Scholar
  48. 48.
    Avfall Sverige, Swedish Waste Management, Goda exempel på förebyggande av avfall för kommuner. Idébok för en mer hållbar produktion och konsumtion, RAPPORT U2011:05, (2011)Google Scholar
  49. 49.
    Swedish EPA, Förebyggande av avfall-hur gör vi och varför ? Redovisning av regeringsuppdrag, (2011)Google Scholar
  50. 50.
    Swedish EPA, Prioriterade områden i planen, (2010)Google Scholar
  51. 51.
    FAO, Global Food Losses and Food Waste, (2011)Google Scholar
  52. 52.
    Carlsson, A., Hemström, K., Edborg, P., Stenmarck, Å., Sörme, L.: Kartläggning av mängder och flöden av textilavfall. Rapport Nr 46, 2011 (2011)Google Scholar
  53. 53.
    Avfall Sverige, Swedish Waste Management, (2009)Google Scholar
  54. 54.
    Song, H., Dotzauer, E., Thorin, E., Guziana, B., Huopana, T., Yan, J.: Energy, a dynamic model to optimize a regional energy system with waste and crops as energy resources for greenhouse gases mitigation. Energy 46, 522–532 (2012)CrossRefGoogle Scholar
  55. 55.
  56. 56.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • B. Guziana
    • 1
  • H. Song
    • 1
  • E. Thorin
    • 1
  • E. Dotzauer
    • 1
  • J. Yan
    • 1
    • 2
  1. 1.School of Sustainable Development of Business, Society and EngineeringMälardalen UniversityVästeråsSweden
  2. 2.School of Chemical ScienceRoyal Institute of TechnologyStockholmSweden

Personalised recommendations