Waste and Biomass Valorization

, Volume 5, Issue 4, pp 529–549 | Cite as

Biotransformation of Citrus By-Products into Value Added Products

  • Diomi Mamma
  • Paul ChristakopoulosEmail author


Citrus by-products are the processing wastes generated after citrus juice extraction and constitute about 50 % of fresh fruit weight. This solid residue comprised of peel (flavedo and albedo), pulp (juice sac residue), rag (membranes and cores) and seeds. The disposal of the fresh peels is becoming a major problem to many factories. Usually, citrus juice industries dry the residue and it is either sold as raw material for pectin extraction or pelletized for animal feeding, though none of these processes is very profitable. This residual material is a poor animal feed supplement because of its extremely low protein content and high amount of sugar. The application of agroindustrial by-products in bioprocesses offers a wide range of alternative substrates, thus helping solve pollution problems related to their disposal. This article reviews attempts that have been made to use citrus by-products to generate several value-added products, such as essential oils, pectin, enzymes, single cell protein, natural antioxidants, ethanol, organic acids, and prebiotics.


Citrus wastes Green productivity Bioconversion Upgrading Enzymes Biofuels Antioxidants Review 



Arabinogalactan I


Biological oxygen demand


By-product feedstuffs


Chemical oxygen demand


Citrus peels waste


Citrus waste


Instantaneous controlled pressure drop


Dried citrus pulp


Dietary fibre


Dry matter


Greenhouse gas




Hairy regions


Insoluble dietary fibre


Microwave hydrodiffusion and gravity


Mandarin peel


Microwave steam diffusion


Organic loading rate


Orange-pulp pellets


Pectic oligosaccharides






Single cell protein


Soluble dietary fibre


Solvent free microwave extraction


Separate hydrolysis and fermentation


Submerged fermentation


Simultaneous saccharification and fermentation


Subcritical water extraction


Total organic carbon


Vacuum microwave hydro distillation


Volatile solids


  1. 1.
    Kale, P.N., Adsule, P.G.: Citrus. In: Salunkhe, D.K., Kadam, S.S. (eds.) Handbook of Fruit Science and Technology: Production, Composition, Storage, and Processing, pp. 39–65. Marcel Dekker Inc., New York (1995)Google Scholar
  2. 2.
  3. 3.
    FAO (Food and Agriculture Organisation of the United Nations): Citrus Fruit: Fresh and Processed. Annual Statistics 2012. (
  4. 4.
    Garzón, C.G., Hours, R.A.: Citrus waste: an alternative substrate for pectinase production in solid-state culture. Bioresour. Technol. 39, 93–95 (1992)Google Scholar
  5. 5.
    Lin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesbyc, R., Luque, R.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6, 426–464 (2013)Google Scholar
  6. 6.
    Lapuerta, M., Hernandez, J.J., Pazo, A., Lopez, J.: Gasification and co-gasification of biomass wastes: effect of the biomass origin and the gasifier operating conditions. Fuel Process. Technol. 89(9), 828–837 (2008)Google Scholar
  7. 7.
    Ghani, W.A., Alias, A.B., Savory, R.M., Cliffe, K.R.: Co-combustion of agricultural residues with coal in a fluidized bed combustor. Waste Manage. 29, 767–773 (2009)Google Scholar
  8. 8.
    Bampidis, V.A., Robinson, P.H.: Citrus by-products as ruminant feeds: a review. Anim. Feed Sci. Technol. 128, 175–217 (2006)Google Scholar
  9. 9.
    Sinclair, W.B.: The Biochemistry and Physiology of the Lemon and Other Citrus Fruits. Division of Agriculture and Natural Resources, University of California, Oakland (1984)Google Scholar
  10. 10.
    Ensminger, M.E., Oldfield, J.E., Heinemann, W.W.: Feeds and Nutrition, 2nd edn. The Ensminger Publishing Company, Clovis (1990)Google Scholar
  11. 11.
    Martínez-Pascual, J., Fernández-Carmona, J.: Composition of citrus pulp. Anim. Feed Sci. Technol. 5, 1–10 (1980)Google Scholar
  12. 12.
    Madrid, J., Hernández, F., Pulgar, M.A., Cid, J.M.: Dried lemon as energetic supplement of diet based on urea-treated barley straw: effects on intake and digestibility in goats. Anim. Feed Sci. Technol. 63, 89–98 (1996)Google Scholar
  13. 13.
    Melèndez-Martínez, A.J., Britton, G., Vicario, I.M., Heredia, F.J.: The complex carotenoid pattern of orange juices from concentrate. Food Chem. 109, 546–553 (2008)Google Scholar
  14. 14.
    Roussos, P.A.: Phytochemicals and antioxidant capacity of orange (Citrus sinensis (l.) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece. Sci. Hortic. 129, 253–258 (2011)Google Scholar
  15. 15.
    Ammerman, C.B., Henry, P.R.: Citrus and vegetable products for ruminant animals. In: Proceedings of the Alternative Feeds for Dairy and Beef Cattle Symposium, pp. 103–110. St. Louis, MO, USA (1991)Google Scholar
  16. 16.
    Braddock, R.J., Temelli, F., Cadwallader, K.R.: Citrus essential oils—a dossier for material safety data sheets. Food Technol. 40(11), 114–116 (1986)Google Scholar
  17. 17.
    Hull, W.Q., Lindsay, C.W., Baier, W.E.: Chemicals from oranges. Ind. Eng. Chem. 45(5), 876–890 (1953)Google Scholar
  18. 18.
    Anagnostopoulou, M.A., Kefalas, P., Papageorgiou, V.P., Assimopoulou, A.N., Boskou, D.: Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem. 94, 19–25 (2006)Google Scholar
  19. 19.
    Raeissi, S., Diaz, S., Espinosa, S., Peters, C.J., Brignole, E.A.: Ethane as an alternative solvent for supercritical extraction of orange peel oils. J. Supercrit. Fluids 45, 306–313 (2008)Google Scholar
  20. 20.
    Chemat, F.: Techniques for oil extraction. In: Sawamura, M. (ed.) Citrus Essential Oils: Flavor and Fragrance, pp. 9–36. Wiley, Hoboken (2010)Google Scholar
  21. 21.
    Pollien, P., Ott, A., Fay, L.B., Maignial, L., Chaintreau, A.: Simultaneous distillation–extraction: preparative recovery of volatiles under mild conditions in batch or continuous operations. Flavour Fragr. J. 13, 413–423 (1998)Google Scholar
  22. 22.
    de Castro, M.D.L., Jiménez Carmona, M., Fernandez-Prez, V.: Towards more rational techniques for the isolation of valuable essential oils from plants. Trends Anal. Chem. 18(11), 708–716 (1999)Google Scholar
  23. 23.
    Ferhat, M.A., Meklati, B.Y., Chemat, F.: Comparison of different isolation methods of essential oil from citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour Frag. J. 22, 494–504 (2007)Google Scholar
  24. 24.
    Herrero, M., Mendiola, J.A., Cifuentes, A., Ibáñez, E.: Supercritical fluid extraction: recent advances and applications. J. Chromatogr. A 1217, 2495–2511 (2010)Google Scholar
  25. 25.
    Galanakis, G.M.: Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012)Google Scholar
  26. 26.
    Crea, R.: Method of obtaining a hydroxytyrosol-rich composition from vegetation water. World Intellectual Property Organization. WO/2002/0218310 (2002)Google Scholar
  27. 27.
    Vinatoru, M.: An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8, 303–313 (2001)Google Scholar
  28. 28.
    Vilkhu, K., Mawson, R., Simons, L., Bates, D.: Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov. Food Sci. Emerg. 9, 161–169 (2008)Google Scholar
  29. 29.
    Chemat, F., Zill-e-Huma, Khan, M.K.: Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason. Sonochem. 18, 813–835 (2011)Google Scholar
  30. 30.
    Ma, Y.Q., Chen, J.C., Liu, D.H., Ye, X.Q.: Simultaneous extraction of phenolic compounds of citrus peel extracts: effect of ultrasound. Ultrason. Sonochem. 16, 57–62 (2009)Google Scholar
  31. 31.
    Carr, A.G., Mammucarib, R., Fosterb, N.R.: A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem. Eng. J. 172, 1–17 (2011)Google Scholar
  32. 32.
    Gámiz-Gracia, L., de Castro, M.D.L.: Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta 51, 1179–1185 (2000)Google Scholar
  33. 33.
    Kim, J.-W., Nagaoka, T., Ishida, Y., Hasegawa, T., Kitagawa, T., Lee, S.-C.: Subcritical water extraction of nutraceutical compounds from citrus pomaces. Separ. Sci. Technol. 44, 2598–2608 (2009)Google Scholar
  34. 34.
    Allaf, K., Rezzoug, S.A., Cioffi, F., Contento, M.P.: Processus de Traitement Thermo-Mécanique par Détente Instantanée Controlée des Fruits, Jus et Peaux d’Agrumes, French patent no. 98/11105 (1998)Google Scholar
  35. 35.
    Allaf, K., Louka, N., Bouvier, J.M., Parent, M., Forget, M.: Procédé de Traitement de Produits Végétaux et Installation pour la Mise en Oeuvre d’un Tel Procédé, French patent no. 93/09728 (1993)Google Scholar
  36. 36.
    Rezzoug, S.A., Louka, N., Allaf, K.: Effect of the main processing parameters of the instantaneous controlled pressure drop process on oil isolation from rosemary leaves. Kinetics aspects. J. Essent. Oil Res. 12(3), 336–344 (2000)Google Scholar
  37. 37.
    Rezzoug, S.A., Boutekedjiret, C., Allaf, K.: Optimization of operating conditions of rosemary essential oil extraction by a fast controlled pressure drop process using response surface methodology. J. Food Eng. 71, 9–17 (2005)Google Scholar
  38. 38.
    Rezzoug, S.A., Louka, N.: Thermomechanical process intensification for oil extraction from orange peels. Innov. Food Sci. Emerg. 10, 530–536 (2009)Google Scholar
  39. 39.
    Chemat, F., Abert-Vian, M., Fernandez, X.: Microwave-assisted extraction of essential oils and aromas. In: Chemat, F., Cravotto, G. (eds.) Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice, Food Engineering Series 4, pp. 53–68. Springer Science + Business Media, New York (2013)Google Scholar
  40. 40.
    Mengal, P., Mompon, B.: Method and plant for solvent-free microwave extraction of natural products. WO Pat. 94/26853 (1994)Google Scholar
  41. 41.
    Chemat, F., Smadja, J., Lucchesie, M.E.: Solvent free microwave extraction of volatile natural compound. European Patent EP 1 439218 B1 (2004)Google Scholar
  42. 42.
    Chemat, F., Lucchesie, M.E., Smadja, J.: Solvent free microwave extraction of volatile natural substances. American Patent US 0187340 A1 (2004)Google Scholar
  43. 43.
    Ferhat, M.A., Meklati, B.Y., Smadja, J., Chemat, F.: An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. J. Chromatogr. A 1112, 121–126 (2006)Google Scholar
  44. 44.
    Chemat, F., Vian, M., Visioni, F.: Microwave hydrodiffusion for isolation of natural products. European Patent EP 1,955,749 A1 (2008)Google Scholar
  45. 45.
    Vian, A., Fernandez, M., Visinoni, X., Chemat, F.: Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. Chromatogr. A 1190, 14–17 (2008)Google Scholar
  46. 46.
    Bousbia, N., Vian, M., Ferhat, M., Meklati, B., Chemat, F.: A new process for extraction of essential oil from Citrus peels: microwave hydrodiffusion and gravity. J. Food Eng. 90, 409–413 (2009)Google Scholar
  47. 47.
    Farhat, A., Fabiano-Tixier, A.S., Maataoui, M.E., Maingonnat, J.F., Romdhane, M., Chemat, F.: Microwave steam diffusion for extraction of essential oil from orange peel: kinetic data, extract’s global yield and mechanism. Food Chem. 125, 255–261 (2011)Google Scholar
  48. 48.
    Vincken, J.P., Schols, H.A., Oomen, R.J.F.J., Beldman, G., Visser, R.G.F., Voragen, A.G.J.: Pectin-The Hairy thing. In: Voragen, F., Schols, H., Visser, R. (eds.) Advances in Pectin and Pectinase Research, pp. 47–59. Kluwer Academic Publishers, The Netherlands (2003)Google Scholar
  49. 49.
    Willats, W.G.T., Knox, J.P., Mikkelsen, J.D.: Pectin: new insights into an old polymer are starting to gel. Trends Food Sci. Technol. 17, 97–104 (2006)Google Scholar
  50. 50.
    Min, B., Lim, J., Ko, S., Lee, K.-G., Lee, S.H., Lee, S.: Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Bioresour. Technol. 102, 3855–3860 (2011)Google Scholar
  51. 51.
    Contreras-Esquivel, J.C., Voget, C.E., Vita, C.E., Espinoza-Perez, J.D., Renard, C.M.G.C.: Enzymatic extraction of lemon pectin by endo-polygalacturonase from Aspergillus niger. Food Sci. Biotechnol. 15, 163–167 (2006)Google Scholar
  52. 52.
    Mandalari, G., Bennett, R.N., Kirby, A.R., Lo Curto, R.B., Bisignano, G., Waldron, K.W., Faulds, G.B.: Enzymatic hydrolysis of flavonoids and pectic oligosaccharides from Bergamot (Citrus bergamia Risso) peel. J. Agric. Food Chem. 54, 8307–8313 (2006)Google Scholar
  53. 53.
    Zykwinska, A., Boiffard, M.-H., Kontkanen, H., Buchert, J., Thibault, J.-F., Bonnin, E.: Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. J. Agric. Food Chem. 56, 8926–8935 (2008)Google Scholar
  54. 54.
    Lim, J., Yoo, J., Ko, S., Lee, S.: Extraction and characterization of pectin from Yuza (Citrus junos) pomace: a comparison of conventional-chemical and combined physical-enzymatic extractions. Food Hydrocolloid. 29, 160–165 (2012)Google Scholar
  55. 55.
    Panchev, I., Kirchev, N., Kratchanov, C.: Improving pectin technology. Int. J. Food Sci. Technol. 23, 337–341 (1988)Google Scholar
  56. 56.
    Oosterveld, A., Beldman, G., Schols, H.A., Voragen, A.G.J.: Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. Carbohydr. Res. 328, 185–197 (2000)Google Scholar
  57. 57.
    Fishman, M.L., Chau, H.K., Hoagland, P., Ayyad, K.: Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. Carbohydr. Res. 323, 126–138 (2000)Google Scholar
  58. 58.
    Fishman, M.L., Walker, P.N., Chau, H.K., Hotchkis, A.T.: Flash extraction of pectin from orange albedo by steam injection. Biomacromolecules 4, 880–889 (2003)Google Scholar
  59. 59.
    Kratchanova, M., Pavlovaa, E., Panchev, I.: The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr. Polym. 56, 181–185 (2004)Google Scholar
  60. 60.
    Liu, Y., Shi, J., Langrish, T.A.G.: Water-based extraction of pectin from flavedo and albedo of orange peels. Chem. Eng. J. 120, 203–209 (2006)Google Scholar
  61. 61.
    Ueno, H., Tanaka, M., Hosino, M., Sasaki, M., Goto, M.: Extraction of valuable compounds from the flavedo of Citrus junos using subcritical water. Sep. Purif. Technol. 62, 513–516 (2008)Google Scholar
  62. 62.
    Jayani, R.S., Saxena, S., Gupta, R.: Microbial pectinolytic enzymes: a review. Process Biochem. 40, 2931–2944 (2005)Google Scholar
  63. 63.
    Horn, S.J., Vaaje-Kolstad, G., Westereng B., Eijsink, V.G.H.: Novel enzymes for the degradation of cellulose. Biotechnology for Biofuels 5, art. No. 45 (2012). doi: 10.1186/1754-6834-5-45
  64. 64.
    Van Dyk, J.S., Pletschke, B.I.: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30(6), 1458–1480 (2012)Google Scholar
  65. 65.
    Maldonado, M.C., Navarro, A., Callieri, D.A.S.: Production of pectinases by Aspergillus sp. using differently pretreated lemon peel as the carbon source. Biotechnol. Lett. 8, 501–504 (1986)Google Scholar
  66. 66.
    Fonseca, M.J.V., Said, S.: The pectinase produced by Tubercularia vulgaris in submerged culture using pectin or orange-pulp pellets as inducer. Appl. Microbiol. Biotechnol. 42, 32–35 (1994)Google Scholar
  67. 67.
    Federici, F., Petruccioli, M.: Growth and polygalacturonase production by Aureobasidium pullulans on orange peel waste. Microbiol. Aliment. Nutr. 3, 39–46 (1985)Google Scholar
  68. 68.
    Silva, D., Martins, E.S., Silva, R., Gomes, E.: Pectinase production by Penicillium viridicatum Rfc3 by solid state fermentation using agricultural wastes and agro-industrial by-products. Braz. J. Microbiol. 33, 318–324 (2002)Google Scholar
  69. 69.
    Larios, G., Garcia, J.M., Huitrdn, C.: Endopolygalacturonase production from untreated lemon peel by Aspergillus sp. CHY-1043. Biotechnol. Lett. 11, 729–734 (1989)Google Scholar
  70. 70.
    Dhillon, S.S., Gill, R.K., Gill, S.S., Singh, M.: Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger. Int. J. Environ. Stud. 61(2), 199–210 (2004)Google Scholar
  71. 71.
    Mahmood, A.U., Greenman, J., Scragg, A.H.: Orange and potato peel extracts: analysis and use as Bacillus substrates for the production of extracellular enzymes in continuous culture. Enzyme Microb. Technol. 22, 130–137 (1998)Google Scholar
  72. 72.
    Kapoor, M., Beg, Q.K., Bhushan, B., Dadhich, K.S., Hoondal, G.S.: Production and partial purification and characterization of a thermo-alkali stable polygalacturonase from Bacillus sp. MG-cp-2. Process Biochem. 36, 467–473 (2000)Google Scholar
  73. 73.
    Martins, E.S., Silva, D., Da Silva, R., Gomes, E.: Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem. 37, 949–954 (2002)Google Scholar
  74. 74.
    Seyis, I., Aksoz, N.: Xylanase production from Trichoderma harzianum 1073 D3 with alternative carbon and nitrogen sources. Food Technol. Biotechnol. 43, 37–40 (2005)Google Scholar
  75. 75.
    Kaur, G., Kumar, S., Satyanarayana, T.: Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour. Technol. 94, 239–243 (2004)Google Scholar
  76. 76.
    De Gregorio, A., Mandalari, G., Arena, N., Nucita, F., Tripodo, M.M., Lo Curto, R.B.: SCP and crude pectinase production by slurry-state fermentation of lemon pulps. Bioresour. Technol. 83, 89–94 (2002)Google Scholar
  77. 77.
    Ismail, A.S.: Utilization of orange peels for the production of multi-enzyme complexes by some fungal strains. Process Biochem. 1, 645–650 (1996)Google Scholar
  78. 78.
    Mamma, D., Kourtoglou, E., Christakopoulos, P.: Fungal multienzyme production on industrial byproducts of the citrus-processing industry. Bioresour. Technol. 99, 2373–2383 (2008)Google Scholar
  79. 79.
    Pedrolli, D.B., Carmona, E.C.: Pectin Lyase from Aspergillus giganteus: comparative study of productivity of submerged fermentation on citrus pectin and orange waste. Appl. Biochem. Microbiol. 45(6), 610–616 (2009)Google Scholar
  80. 80.
    Zhou, J.-M., Ge, X.Y., Zhang, W.G.: Improvement of polygalacturonase production at high temperature by mixed culture of Aspergillus niger and Saccharomyces cerevisiae. Bioresour. Technol. 102, 10085–10088 (2011)Google Scholar
  81. 81.
    Martínez-Trujillo, A., Arreguín-Range, L., García-Rivero, M., Aguilar-Osorio, G.: Use of fruit residues for pectinase production by Aspergillus flavipes FP-500 and Aspergillus terreus FP-370. Lett. Appl. Microbiol. 53, 202–209 (2011)Google Scholar
  82. 82.
    Ruiz, H.A., Rodríguez-Jassoa, R.M., Rodríguez, R., Contreras-Esquivel, J.C., Aguilar, C.N.: Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochemical Eng. J. 65, 90–95 (2012)Google Scholar
  83. 83.
    Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ. Convers. Manage. 52, 858–875 (2011)Google Scholar
  84. 84.
    Cardona, C.A., Sánchez, O.J.: Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98, 2415–2457 (2007)Google Scholar
  85. 85.
    Hahn-Hägerdal, B., Gable, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G.: Bio-ethanol- the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549–556 (2006)Google Scholar
  86. 86.
    Mussatto, S.I., Dragone, G., Guimarães, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A.: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 28, 817–830 (2010)Google Scholar
  87. 87.
    Grohmann, K., Baldwin, E.A.: Hydrolysis of orange peel with pectinase and cellulase enzymes. Biotechnol. Lett. 14, 1169–1174 (1992)Google Scholar
  88. 88.
    Grohmann, K., Baldwin, E.A., Buslig, B.S.: Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 45/46, 315–327 (1994)Google Scholar
  89. 89.
    Grohmann, K., Cameron, R.G., Buslig, B.S.: Fractionation and pre-treatment of orange peel by dilute acid hydrolysis. Bioresour. Technol. 54, 129–141 (1995)Google Scholar
  90. 90.
    Wilkins, M.R., Widmer, W.W., Grohmann, K., Cameron, R.G.: Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour. Technol. 98, 1596–1601 (2007)Google Scholar
  91. 91.
    Grohmann, K., Baldwin, E.A., Buslig, B.S., Ingram, L.O.: Fermentation of galacturonic acid and other sugars in orange peel hydrolysates by the ethanolgenic strain of Escherichia coli. Biotechnol. Lett. 16, 281–286 (1994)Google Scholar
  92. 92.
    Grohmann, K., Cameron, R.G., Buslig, B.S.: Fermentation of sugars in orange peel hydrolysates to ethanol by recombinant Escherichia coli K011. Appl. Biochem. Biotechnol. 51/52, 423–435 (1996)Google Scholar
  93. 93.
    Beall, D.S., Ohta, K., Ingram, L.O.: Parametric studies of ethanol production from xylose and other sugars by recombinant Escherichia coli. Biotechnol. Bioeng. 38, 296–303 (1991)Google Scholar
  94. 94.
    Wilkins, M.R., Suryawati, L., Maness, N.O., Chrz, D.: Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J. Microbiol. Biotechnol. 23, 1161–1168 (2007)Google Scholar
  95. 95.
    Wilkins, M.R., Widmer, W.W., Grohmann, K.: Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem. 42, 1614–1619 (2007)Google Scholar
  96. 96.
    Oberoi, H.S., Vadlani, P.V., Madl, R.L., Saida, L., Abeykoon, J.P.: Ethanol production from orange peels: two stage hydrolysis and fermentation studies using optimized parameters through experimental design. J. Agric. Food Chem. 58, 3422–3429 (2010)Google Scholar
  97. 97.
    Panesar, P.S., Marwaha, S.S., Kennedy, J.F.: Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biotechnol. 81, 623–635 (2006)Google Scholar
  98. 98.
    Wilkins, M.R.: Effect of orange peel oil on ethanol production by Zymomonas mobilis. Biomass Bioenerg. 33, 538–541 (2009)Google Scholar
  99. 99.
    Choi, I.S., Kim, J.-H., Wi, S.G., Kim, K.-H., Bae, H.Y.: Bioethanol production from mandarin (Citrus unshiu) peel waste using popping pretreatment. Appl. Energ. 102, 204–210 (2013)Google Scholar
  100. 100.
    Sharma, N., Kalra, K.L., Oberoi, H.S., Bansal, S.: Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J. Microbiol. 47, 310–316 (2007)Google Scholar
  101. 101.
    Zhou, W., Widmer, W., Grohmann, K.: Developments in ethanol production from citrus peel waste. Proc. Fl. State Hortic. 121, 307–310 (2008)Google Scholar
  102. 102.
    Oberoi, H.S., Vadlani, P.V., Nanjundaswamy, A., Bansal, S., Singh, S., Kaur, S., Babbar, N.: Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresour. Technol. 102, 1593–1601 (2011)Google Scholar
  103. 103.
    Boluda-Aguilar, M., García-Vidal, L., González-Castañeda, F.P., López-Gómez, A.: Mandarin peel wastes pretreatment with steam explosion for bioethanol production. Bioresour. Technol. 101, 3506–3513 (2010)Google Scholar
  104. 104.
    Boluda-Aguilar, M., López-Gómez, A.: Production of bioethanol by fermentation of lemon (Citrus limon L.) peel wastes pretreated with steam explosion. Ind. Crop Prod. 41, 188–197 (2013)Google Scholar
  105. 105.
    Pourbafrani, M., Forgács, G., Horváth, I.S., Niklasson, C., Taherzadeh, M.J.: Production of biofuels, limonene and pectin from citrus wastes. Bioresour. Technol. 101, 4246–4250 (2010)Google Scholar
  106. 106.
    Zhou, W., Widmer, W., Grohmann, K.: Economic analysis of ethanol production from citrus peel waste. Proc. Fl. State Hortic. 120, 310–315 (2007)Google Scholar
  107. 107.
    Nallathambi, V.: Biomass estimates, characteristics, biochemical methane potential, kinetics and energy flow from Jatropha curcus on dry lands. Biomass Bioenerg. 33(4), 589–596 (2009)Google Scholar
  108. 108.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008)Google Scholar
  109. 109.
    Tsagarakis, K.P., Georgantzis, N.: The role of information on farmers’ willingness to use recycled water for irrigation. Water Sci. Technol. 3(4), 105–113 (2003)Google Scholar
  110. 110.
    Nallathambi Gunaseelan, V.: Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenerg. 26, 389–399 (2004)Google Scholar
  111. 111.
    Kaparaju, P.L.N., Rintala, J.A.: Thermophilic anaerobic digestion of industrial orange waste. Environ. Technol. 27(6), 623–633 (2006)Google Scholar
  112. 112.
    Martín, M.A., Siles, J.A., Chica, A.F., Martín, A.: Biomethanization of orange peel waste. Bioresour. Technol. 101, 8993–8999 (2010)Google Scholar
  113. 113.
    Forgács, G., Pourbafrani, M., Niklasson, C., Taherzadeh, M.J., Hováth, I.S.: Methane production from citrus wastes: process development and cost estimation. J. Chem. Technol. Biotechnol. 87, 250–255 (2012)Google Scholar
  114. 114.
    Angumeenal, A.R., Venkappayya, D.: An overview of citric acid production. Food Sci. Technol. LEB 50, 367–370 (2013)Google Scholar
  115. 115.
    Dhillon, G.S., Brar, S.K., Vermab, M., Tyagia, R.D.: Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid by Aspergillus niger. Biochem. Eng. J. 54, 83–92 (2011)Google Scholar
  116. 116.
    Aravantinos-Zafiris, G., Tzia, C., Oreopoulou, V., Thomopoulos, C.D.: Fermentation of orange processing wastes for citric acid production. J. Sci. Food Agric. 65, 117–120 (1994)Google Scholar
  117. 117.
    Rivas, B., Torrado, A., Torre, P., Converti, A., Domínguez, J.M.: Submerged citric acid fermentation on orange peel autohydrolysate. J. Agric. Food Chem. 56, 2380–2387 (2008)Google Scholar
  118. 118.
    Hang, Y.D., Luh, B.S., Woodams, E.E.: Microbial production of citric acid by solid state fermentation of kiwifruit peel. J. Food Sci. 52, 226–227 (1987)Google Scholar
  119. 119.
    Zhang, Q.: Utilization of citrus wastes in production of citric acid. Shipin Kexue (Beijing) 104, 21–24 (1988)Google Scholar
  120. 120.
    Kang, S.K., Park, H.H., Lee, J.H., Lee, Y.S., Kwon, I.B., Sung, N.K.: Citric acid fermentation from mandarin orange peel by Aspergillus niger. Sanop Misaengmul Hakhoechi 17, 510–518 (1989)Google Scholar
  121. 121.
    Kuforiji, O.O., Kuboye, A.O., Odunfa, S.A.: Orange and pineapple wastes as potential as potential substrates for citric acid production. Int. J. Plant Biol. 1e4, 19–21 (2010)Google Scholar
  122. 122.
    Zeikus, J.G., Jain, M.K., Elankovan, P.: Biotechnology of succinic acid production and market for derived industrial products. Appl. Microbiol. Biotechnol. 51, 545–552 (1999)Google Scholar
  123. 123.
    Sauer, M., Porro, D., Mattanovich, D., Branduardi, P.: Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26(2), 100–108 (2007)Google Scholar
  124. 124.
    Adsul, M.G., Singhvi, M.S., Gaikaiwari, S.A., Gokhale, D.V.: Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour. Technol. 102, 4304–4312 (2011)Google Scholar
  125. 125.
    Li, Q., Siles, J.A., Thompson, I.P.: Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Appl. Microbiol. Biotechnol. 88, 671–678 (2010)Google Scholar
  126. 126.
    Obeta Ugwuanyi, J., Mceil, B., Harvey, L.M.: Production of Protein-Enriched Feed Using Agro-Industrial Residues as Substrates. In: Singh nee’ Nigam, P., Pandey, A. (eds.) Biotechnology for Agro-Industrial Residues, pp. 77–100. Springer Science + Business Media B.V., New York (2009)Google Scholar
  127. 127.
    Taiwo, A.A., Adebowale, E.A., Greenhalgh, J.F.D., Akinsoyinu, A.O.: Techniques for trapping ammonia generated from urea treatment of barley straw. Anim. Feed Sci. Technol. 56, 133–141 (1995)Google Scholar
  128. 128.
    Scerra, V., Caridi, A., Foti, F., Sinatra, M.C.: Influence of dairy Penicillium spp. on nutrient content of citrus fruit peel. Anim. Feed Sci. Technol. 78, 169–176 (1999)Google Scholar
  129. 129.
    Scerra, V., Caridi, A., Foti, F., Sinatra, M.C., Caparra, P.: Changes in chemical composition during the colonisation of citrus pulps by a dairy Penicillium roqueforti strain. Bioresour. Technol. 72, 197–198 (2000)Google Scholar
  130. 130.
    Locurto, R., Tripodo, M.M., Leuzzi, U., Giuffre, D., Vaccarino, C.: Flavonoids recovery and SCP production from orange peel. Bioresour. Technol. 42(2), 83–87 (1992)Google Scholar
  131. 131.
    Vaccarino, C., Locurto, R., Tripodo, M.M., Patane, R., Lagana, G., Ragno, A.: SCP from orange peel by fermentation with fungi-acid-treated peel. Biol. Waste 30(1), 1–10 (1989)Google Scholar
  132. 132.
    Gallaher, D., Schneeman, B.O.: Dietary fiber. In: Bowman, B., Russel, R. (eds.) Present Knowledge in Nutrition, pp. 83–91. ILSI-Press, Washington, D.C. (2001)Google Scholar
  133. 133.
    Villanueva-Suarez, M.J., Redondo-Cuenca, A., Rodríguez-Sevilla, M.D., de las Heras, M.: Characterization of nonstarch polysaccharides content from different edible organs of some vegetables, determined by GC and HPLC: Comparative study. J. Agric. Food Chem. 51, 5950–5955 (2003)Google Scholar
  134. 134.
    Chau, C.F., Huang, Y.L.: Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng. J. Agric. Food Chem. 51, 2615–2618 (2003)Google Scholar
  135. 135.
    Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H.: Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem. 124, 411–421 (2011)Google Scholar
  136. 136.
    Grigelmo-Miguel, N., Martín-Belloso, O.: Characterization of dietary fiber from orange juice extraction. Food Res. Int. 131, 355–361 (1999)Google Scholar
  137. 137.
    Fernández-Ginés, J.M., Fernández-López, J., Sayas-Barberá, E., Pérez-Alvarez, J.A.: Effects of storage conditions on quality characteristics of bologna sausages made with citrus fiber. J. Food Sci. 68, 710–715 (2003)Google Scholar
  138. 138.
    Figuerola, F., Hurtado, M.L., Estévez, A.N., Chiffelle, I., Asenjo, F.: Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 91, 395–401 (2005)Google Scholar
  139. 139.
    Marín, F.R., Soler-Rivas, C., Benavente-García, O., Castillo, J., Pérez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100, 736–741 (2007)Google Scholar
  140. 140.
    Rezzadori, K., Benedetti, S., Amante, E.R.: Proposals for the residues recovery: orange waste as raw material for new products. Food Bioprod. Process. 90, 606–614 (2012)Google Scholar
  141. 141.
    Bortoluzzi, R.C., Marangoni, C.: Caracterizacão da fibra dietética obtida da extracão do suco de laranja. Rev. Bras. Prod. Agroind. 8(1), 61–66 (2006)Google Scholar
  142. 142.
    Garau, M.C., Simal, S., Rossello, C., Femenia, A.: Effect of air-drying temperature on physico-chemical properties of dietary fibre and antioxidant capacity of Orange (Citrus aurantium v. Canoneta) by-products. Food Chem. 104, 1014–1024 (2007)Google Scholar
  143. 143.
    Garcia, M.L., Dominguez, R., Galvez, M., Gavlez, D., Casas, C., Selgas, M.D.: Utilisation of cereal and fruit fibres in low fat dry fermented sausage. Meat Sci. 60, 227–236 (2002)Google Scholar
  144. 144.
    Mandalari, G., Nueno Palop, C., Tuohy, K., Gibson, G.R., Bennett, R.N., Waldron, K.W., Bisignano, G., Narbad, A., Faulds, C.B.: In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl. Microbiol. Biotechnol. 73, 1173–1179 (2007)Google Scholar
  145. 145.
    Olano-Martín, E., Williams, M.R., Gibson, G.R., Rastall, R.A.: Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29. FEMS Microbiol. Lett. 218, 101–105 (2003)Google Scholar
  146. 146.
    Olano-Martín, E., Rimbach, G.H., Gibson, G.R., Rastall, R.A.: Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res. 23, 341–346 (2003)Google Scholar
  147. 147.
    Gullón, P., Gullón, B., Moure, A., Alonso, J.L., Domínguez, H., Parajó, J.C.: Manufacture of prebiotics from biomass sources. In: Charalampopoulos, D., Rastall, R.A. (eds.) Prebiotics and Probiotics Science and Technology, pp. 535–589. Springer, New York (2009)Google Scholar
  148. 148.
    Fanaro, S., Jelinek, J., Stahl, B., Boehm, G., Kock, R., Vigi, V.: Acidic oligosaccharides from pectin hydrolysate as new component for infant formulae: effect on intestinal flora, stool characteristics, and pH. J. Pediatr. Gastroenterol. Nutr. 41, 186–190 (2005)Google Scholar
  149. 149.
    Magne, F., Hachelaf, W., Suau, A., Boudraa, G., Bouziane-Nedjadi, K., Rigottier-Gois, L., Touhami, M., Desjeux, J.-F., Pochart, P.: Effects on faecal microbiota of dietary and acidic oligosaccharides in children during partial formula feeding. J. Pediatr. Gastroenterol. Nutr. 46, 580–588 (2008)Google Scholar
  150. 150.
    Olano-Martín, E., Gibson, G.R., Rastall, R.A.: Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol. 93, 505–511 (2002)Google Scholar
  151. 151.
    Manderson, K., Pinart, M., Tuohy, K.M., Grace, W.E., Hotchkiss, A.T., Widmer, W., Yadhav, M.P., Gibson, G.R., Rastall, R.A.: In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl. Environ. Microbiol. 71, 8383–8389 (2005)Google Scholar
  152. 152.
    Olano-Martín, E., Mountzouris, K.C., Gibson, G.R., Rastall, R.A.: Continuous production of oligosaccharides from pectin in an enzyme membrane reactor. J. Food Sci. 66, 966–971 (2001)Google Scholar
  153. 153.
    Martínez Sabajanes, M., Yáñez, R., Alonso, J.L., Parajó, J.C.: Pectic oligosaccharides production from orange peel waste by enzymatic hydrolysis. Int. J. Food Sci. Technol. 47, 747–754 (2012)Google Scholar
  154. 154.
    Zykwinska, A., Boiffard, M.-H., Kontkanen, H., Buchert, J., Thibault, J.-F., Bonnin, E.: Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. J. Agric. Food Chem. 56, 8926–8935 (2008)Google Scholar
  155. 155.
    Hotchkiss, A.T., Olano-Martín, E., Grace, W.E., Williams, M.R., Gibson, G.R., Rastall, R.A.: Pectic oligosaccharides as prebiotics. In: Eggleston, G., Côté, G.L. (eds.) Oligosaccharides in food and agriculture, ACS Symposium series 849, pp. 54–62. Oxford University Press, USA (2003)Google Scholar
  156. 156.
    Martínez Sabajanes, M., Yáñez, R., Alonso, J.L., Parajó, J.C.: Chemical production of pectic oligosaccharides from orange peel wastes. Ind. Eng. Chem. Res. 49, 8470–8476 (2010)Google Scholar
  157. 157.
    Moure, A., Cruz, J.M., Franco, D., Domínguez, M., Sineiro, J., Domínguez, H., Núñez, M.J., Parajó, J.C.: Natural antioxidants from residual sources. Food Chem. 72, 145–171 (2001)Google Scholar
  158. 158.
    Duthie, G., Crozier, A.: Plant-derived phenolic antioxidants. Curr. Opin. Lipidol. 11, 43–47 (2000)Google Scholar
  159. 159.
    Manthey, J.A., Grohmann, K.: Phenols in citrus peel byproducts: concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J. Agric. Food Chem. 49, 3268–3273 (2001)Google Scholar
  160. 160.
    Xu, G., Ye, X., Chen, J., Liu, D.: Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 55, 330–335 (2007)Google Scholar
  161. 161.
    Zia-ur-Rehman, : Citrus peel extract—a natural source of antioxidant. Food Chem. 99, 450–454 (2006)Google Scholar
  162. 162.
    Loizzo, M.L., Tundis, R., Bonesi, M., Menichini, F., De Luca, D., Colica, C., Menichinia, F.: Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J. Sci. Food Agric. 92, 2960–2967 (2012)Google Scholar
  163. 163.
    Xu, G.H., Chen, J.C., Liu, D.H., Zhang, Y.H., Jiang, P., Ye, X.Q.: Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J. Food Sci. 73, C11–C18 (2008)Google Scholar
  164. 164.
    Kim, M.R., Kim, W.C., Lee, D.Y., Kim, C.W.: Recovery of narirutin by adsorption on a non-ionic polar resin from a water-extract of Citrus unshiu peels. J. Food Eng. 78, 27–32 (2007)Google Scholar
  165. 165.
    Kim, J.W., Lee, B.C., Lee, J.H., Nam, K.C., Lee, S.C.: Effect of electron-beam irradiation on the antioxidant activity of extracts from Citrus unshiu pomaces. Radiat. Phys. Chem. 77, 87–91 (2008)Google Scholar
  166. 166.
    Giannuzzo, A.N., Boggetti, H.J., Nazareno, M.A., Mishima, H.T.: Supercritical fluid extraction of naringin from the peel of Citrus paradise. Phytochem. Anal. 14, 221–223 (2003)Google Scholar
  167. 167.
    Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.-S., Dangles, O., Chemat, F.: Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 119, 851–858 (2010)Google Scholar
  168. 168.
    Li, B.B., Smith, B., Hossain, M.M.: Extraction of phenolics from citrus peels II. Enzyme-assisted extraction method. Sep. Purif. Technol. 48, 189–196 (2006)Google Scholar
  169. 169.
    Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 92, 407–418 (2011)Google Scholar
  170. 170.
    Volesky, B., Schiewer, S.: Biosorption of metals. In: Flickinger, M.C., Drew, S.W. (eds.) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, pp. 433–453. Wiley, New York (1999)Google Scholar
  171. 171.
    Ngah, W.S.W., Hanafiah, M.A.K.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2008)Google Scholar
  172. 172.
    Ajmal, M., Rao, R.A.K., Ahmad, R., Ahmad, J.: Adsorption studies of Citrus reticulata (fruit peel of orange): removal of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79, 117–131 (2000)Google Scholar
  173. 173.
    Annadurai, G., Juang, H.S., Lee, D.J.: Adsorption of heavy metal from water using banana and orange peels. Water Sci. Technol. 47, 185–190 (2002)Google Scholar
  174. 174.
    Dhakal, R.P., Ghimire, K.N., Inoue, K.: Adsorptive separation of heavy metals from an aquatic environment using orange. Hydrometallurgy 79, 182–190 (2005)Google Scholar
  175. 175.
    Schiewer, S., Patil, S.B.: Pectin-rich fruit wastes as biosorbents for heavy metal removal: Equilibrium and kinetics. Bioresour. Technol. 99, 1896–1903 (2008)Google Scholar
  176. 176.
    Pérez-Marín, A.B., Meseguer Zapata, V., Ortuño, J.F., Aguilar, M., Sáez, J., Lloréns, M.: Removal of cadmium from aqueous solutions by adsorption onto orange waste. J. Hazard. Mater. 139, 122–131 (2007)Google Scholar
  177. 177.
    Liang, S., Guo, X., Feng, N., Tian, Q.: Isotherms, kinetics and thermodynamic studies of adsorption of Cu2+ from aqueous solutions by Mg2+/K+ type orange peel adsorbents. J. Hazard. Mater. 174, 756–762 (2010)Google Scholar
  178. 178.
    Bhatnagar, A., Minocha, A.K., Sillanpää, M.: Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. J. 48, 181–186 (2010)Google Scholar
  179. 179.
    Feng, N., Guo, X., Liang, S., Zhu, Y., Liu, J.: Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 185, 49–54 (2011)Google Scholar
  180. 180.
    Bayo, J.: Kinetic studies for Cd(II) biosorption from treated urban effluents by native grapefruit biomass (Citrus paradisi L.): the competitive effect of Pb(II), Cu(II) and Ni(II). Chem. Eng. J. 191, 278–287 (2012)Google Scholar
  181. 181.
    Shan, W., Fang, D., Zhao, Z., Shuang, Y., Ning, L., Xing, Z., Xiong, Y.: Application of orange peel for adsorption separation of molybdenum(VI) from Re-containing industrial effluent. Biomass Bioenerg. 37, 289–297 (2012)Google Scholar
  182. 182.
    López, J.A.S., Li, Q., Thompson, I.P.: Biorefinery of waste orange peel. Crit. Rev. Biotechnol. 30(1), 63–69 (2010)Google Scholar
  183. 183.
    Lohrasbi, M., Pourbafrani, M., Niklasson, C., Taherzadeh, M.J.: Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour. Technol. 101, 7382–7388 (2010)Google Scholar
  184. 184.
    Balu, A.M., Budarin, V., Shuttleworth, P.S., Pfaltzgraff, L.A., Waldron, K., Luque, R., Clark, J.H.: Valorisation of orange peel residues: waste to biochemicals and nanoporous materials. ChemSusChem 5, 1694–1697 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensAthensGreece
  2. 2.Biochemical and Chemical Process Engineering, Division of Sustainable Process Engineering, Department of Civil, Environmental and Natural Resources EngineeringLuleå University of TechnologyLuleåSweden

Personalised recommendations