Waste and Biomass Valorization

, Volume 4, Issue 4, pp 719–728 | Cite as

Use of DC Plasma Treated Air Pollution Control (APC) Residue Glass as Pozzolanic Additive in Portland Cement

  • Ioanna Kourti
  • David Deegan
  • Aldo R. Boccaccini
  • Christopher R. CheesemanEmail author
Original Paper


Air pollution control (APC) residues are hazardous waste generated from the air pollution abatement systems operating at energy from waste plants processing municipal solid waste. APC residues can be blended with glass forming additives and treated by direct current (DC) plasma technology, producing a stable, non-hazardous inert glass slag. This research has characterised the pozzolanic activity of this glass slag. The effects of glass cooling rate (quenched or air cooled) and particle size distribution have been investigated. The results show that quenched or fritted APC glass is significantly more pozzolanic than air-cooled glass. The optimum blended Portland cement paste, which maximises APC glass utilization and has the best properties, contained 20 wt % fritted APC glass slag. This blended Portland cement paste had low water demand, developed a dense microstructure and had high compressive strength (~100 MPa). The research has demonstrated that the glass slag resulting from DC plasma treatment of APC residues is pozzolanic and has potential to be beneficially reused in blended cements.


APC residues Pozzolanic materials DC plasma treatment Energy from waste 



This work was completed as part of the project ‘Integrated solution for air pollution control residues (APC) using DC plasma technology’ funded by the UK Technology Strategy Board and Defra, through the Business Resource Efficiency and Waste (BREW) programme.


  1. 1.
    AmuthaRani, D., Gomez, E., Boccaccini, A.R., Hao, L., Deegan, D., Cheeseman, C.R.: Plasma treatment of air pollution control residues. Waste Manag. 28(7), 1254–1262 (2008)CrossRefGoogle Scholar
  2. 2.
    Amutha Rani, D., Roether, J.A., Gomez, E., Deegan, D., Cheeseman, C.R., Boccaccini, A.R.: Glass-ceramics from plasma treated air pollution control (APC) residues. Glass Technol. Eur. J. Glass Sci. Technol. A 50(1), 57–61 (2009)Google Scholar
  3. 3.
    Kourti, I., Rani, D.A., Deegan, D., Boccaccini, A.R., Cheeseman, C.R.: Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. J. Hazard. Mater. 176(1–3), 704–709 (2010)CrossRefGoogle Scholar
  4. 4.
    Kourti, I., Devaraj, A.R., Guerrero Bustos, A., Deegan, D., Boccaccini, A.R., Cheeseman, C.R.: Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase. J. Hazard. Mater. 196, 86–92 (2011)CrossRefGoogle Scholar
  5. 5.
    BSI: Cement—Part 1: composition, specifications and conformity criteria for common cements BS EN 197–1:2000. British Standards Institution, London (2000)Google Scholar
  6. 6.
    Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Arnold, London (1998)Google Scholar
  7. 7.
    Malhotra, V.M., Mehta, K.P.: Pozzolanic and Cementitious Materials, vol. 1. Advances in concrete technology. Taylor & Francis, Abington (1996)Google Scholar
  8. 8.
    Lin, K.L.: The influence of municipal solid waste incinerator fly ash slag blended in cement pastes. Cem. Concr. Res. 35(5), 979–986 (2005)CrossRefGoogle Scholar
  9. 9.
    Wang, K.-S., Lin, K.-L., Huang, Z.-Q.: Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cem. Concr. Res. 31(1), 97–103 (2001)CrossRefGoogle Scholar
  10. 10.
    Dyer, T.D., Dhir, R.K.: Hydration reactions of cement combinations containing vitrified incinerator fly ash. Cem. Concr. Res. 34(5), 849–856 (2004)CrossRefGoogle Scholar
  11. 11.
    Lin, K.L., Wang, K.S., Tzeng, B.Y., Lin, C.Y.: The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash. Waste Manag. 24(2), 199–205 (2004)CrossRefGoogle Scholar
  12. 12.
    Lin, K.L., Wang, K.S., Tzeng, B.Y., Lin, C.Y.: The reuse of municipal solid waste incinerator fly ash slag as a cement substitute. Resour. Conserv. Recycl. 39(4), 315–324 (2003)CrossRefGoogle Scholar
  13. 13.
    Lin, K.L., Wang, K.S., Lin, C.Y., Lin, C.H.: The hydration properties of pastes containing municipal solid waste incinerator fly ash slag. J. Hazard. Mater. 109(1–3), 173–181 (2004)CrossRefGoogle Scholar
  14. 14.
    Saccani, A.A.: Influence of the pozzolanic fraction obtained from vitrified bottom-ashes from MSWI on the properties of cementitious composites. Mater. Struct. 38(3), 367–371 (2005)CrossRefGoogle Scholar
  15. 15.
    Lin, K.L., Chang, W.C., Lin, D.F.: Pozzolanic characteristics of pulverized incinerator bottom ash slag. Constr. Build. Mater. 22(3), 324–329 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lin, K.L., Lin, D.F.: Pozzolanic reactivity of the synthetic slag from municipal solid waste incinerator cyclone ash and scrubber ash. J. Air Waste Manag. Assoc. 56(4), 569–574 (2006)CrossRefGoogle Scholar
  17. 17.
    Lee, T.-C., Wang, W.-J., Shih, P.-Y.: Slag-cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit. Constr. Build. Mater. 22(9), 1914–1921 (2008)CrossRefGoogle Scholar
  18. 18.
    BSI: Methods of Testing Cement. Pozzolanicity Test for Pozzolanic Cements BS EN 196–5:2005. British Standards Online, London (2005)Google Scholar
  19. 19.
    CA, P.: Portland Cement, Concrete and Heat of Hydration. Concrete Technology Today, London (1997)Google Scholar
  20. 20.
    Day, R.L., Shi, C.: Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes. Cem. Concr. Res. 24(8), 1485–1491 (1994)CrossRefGoogle Scholar
  21. 21.
    Shannag, M.J., Yeginobali, A.: Properties of pastes, mortars and concretes containing natural pozzolan. Cem. Concr. Res. 25(3), 647–657 (1995)CrossRefGoogle Scholar
  22. 22.
    Chandra, S.: Waste Materials Used in Concrete Manufacturing. Noyes Publications, Westwood (1997)Google Scholar
  23. 23.
    Shi, C., Wu, Y., Riefler, C., Wang, H.: Characteristics and pozzolanic reactivity of glass powders. Cem. Concr. Res. 35(5), 987–993 (2005)CrossRefGoogle Scholar
  24. 24.
    Mehta, P.K., Aïtcin, P.C.: Principles underlying production of high-performance concrete. Cem. Concr. Aggreg. 12(2), 70–78 (1990)CrossRefGoogle Scholar
  25. 25.
    Taylor, H.F.W.: Cement Chemistry, 2nd edn. Thomas Telford Services Ltd., London (1997)CrossRefGoogle Scholar
  26. 26.
    Isaia, G.C., Gastaldini, A.L.G., Moraes, R.: Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cem. Concr. Compos. 25(1), 69–76 (2003)CrossRefGoogle Scholar
  27. 27.
    Binici, H., Aksogan, O., Cagatay, I.H., Tokyay, M., Emsen, E.: The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP). Powder Technol. 177(3), 140–147 (2007)CrossRefGoogle Scholar
  28. 28.
    Mostafa, N.Y., El-Hemaly, S.A.S., Al-Wakeel, E.I., El-Korashy, S.A., Brown, P.W.: Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag. Cem. Concr. Res. 31(6), 899–904 (2001)CrossRefGoogle Scholar
  29. 29.
    Roy, D.M., Idorn, G.M.: Hydration structure and properties of blast furnace slag cements. In: ACI Technical Paper, pp. 444–457 (1982)Google Scholar
  30. 30.
    Bensted, J., Barnes, P. (eds.): Structure and Performance of Cements, 2nd edn. Spoon Press, London (2002)Google Scholar
  31. 31.
    Glasser, F.P.: Properties of cement waste composites. Waste Manag. 16(1–3), 159–168 (1996)CrossRefGoogle Scholar
  32. 32.
    Papadakis, V.G., Tsimas, S.: Greek supplementary cementing materials and their incorporation in concrete. Cem. Concr. Compos. 27(2), 223–230 (2005)CrossRefGoogle Scholar
  33. 33.
    ACI: Manual of Concrete Practice, Part 2. American Concrete Institute, Detroit (2002)Google Scholar
  34. 34.
    Dyer, T.D., Halliday, J.E., Dhir, R.K.: An investigation of the hydration chemistry of ternary blends containing cement kiln dust. J. Mater. Sci. 34(20), 4975–4983 (1999)CrossRefGoogle Scholar
  35. 35.
    Wild, S., Khatib, J.M.: Portlandite consumption in metakaolin cement pastes and mortars. Cem. Concr. Res. 27(1), 137–146 (1997)CrossRefGoogle Scholar
  36. 36.
    Sánchez de Rojas, M.I., Luxán, M.P., Frías, M., García, N.: The influence of different additions on portland cement hydration heat. Cem. Concr. Res. 23(1), 46–54 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ioanna Kourti
    • 1
    • 5
  • David Deegan
    • 2
  • Aldo R. Boccaccini
    • 3
    • 4
  • Christopher R. Cheeseman
    • 1
    Email author
  1. 1.Department of Civil and Environmental EngineeringImperial College LondonLondonUK
  2. 2.Tetronics Ltd.Swindon, WiltshireUK
  3. 3.Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  4. 4.Department of MaterialsImperial College LondonLondonUK
  5. 5.European Commission, Institute for Prospective Technological StudiesEuropean IPPC BureauSevilleSpain

Personalised recommendations