Use of DC Plasma Treated Air Pollution Control (APC) Residue Glass as Pozzolanic Additive in Portland Cement
- 239 Downloads
- 1 Citations
Abstract
Air pollution control (APC) residues are hazardous waste generated from the air pollution abatement systems operating at energy from waste plants processing municipal solid waste. APC residues can be blended with glass forming additives and treated by direct current (DC) plasma technology, producing a stable, non-hazardous inert glass slag. This research has characterised the pozzolanic activity of this glass slag. The effects of glass cooling rate (quenched or air cooled) and particle size distribution have been investigated. The results show that quenched or fritted APC glass is significantly more pozzolanic than air-cooled glass. The optimum blended Portland cement paste, which maximises APC glass utilization and has the best properties, contained 20 wt % fritted APC glass slag. This blended Portland cement paste had low water demand, developed a dense microstructure and had high compressive strength (~100 MPa). The research has demonstrated that the glass slag resulting from DC plasma treatment of APC residues is pozzolanic and has potential to be beneficially reused in blended cements.
Keywords
APC residues Pozzolanic materials DC plasma treatment Energy from wasteNotes
Acknowledgments
This work was completed as part of the project ‘Integrated solution for air pollution control residues (APC) using DC plasma technology’ funded by the UK Technology Strategy Board and Defra, through the Business Resource Efficiency and Waste (BREW) programme.
References
- 1.AmuthaRani, D., Gomez, E., Boccaccini, A.R., Hao, L., Deegan, D., Cheeseman, C.R.: Plasma treatment of air pollution control residues. Waste Manag. 28(7), 1254–1262 (2008)CrossRefGoogle Scholar
- 2.Amutha Rani, D., Roether, J.A., Gomez, E., Deegan, D., Cheeseman, C.R., Boccaccini, A.R.: Glass-ceramics from plasma treated air pollution control (APC) residues. Glass Technol. Eur. J. Glass Sci. Technol. A 50(1), 57–61 (2009)Google Scholar
- 3.Kourti, I., Rani, D.A., Deegan, D., Boccaccini, A.R., Cheeseman, C.R.: Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. J. Hazard. Mater. 176(1–3), 704–709 (2010)CrossRefGoogle Scholar
- 4.Kourti, I., Devaraj, A.R., Guerrero Bustos, A., Deegan, D., Boccaccini, A.R., Cheeseman, C.R.: Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase. J. Hazard. Mater. 196, 86–92 (2011)CrossRefGoogle Scholar
- 5.BSI: Cement—Part 1: composition, specifications and conformity criteria for common cements BS EN 197–1:2000. British Standards Institution, London (2000)Google Scholar
- 6.Hewlett, P.C.: Lea’s Chemistry of Cement and Concrete, 4th edn. Arnold, London (1998)Google Scholar
- 7.Malhotra, V.M., Mehta, K.P.: Pozzolanic and Cementitious Materials, vol. 1. Advances in concrete technology. Taylor & Francis, Abington (1996)Google Scholar
- 8.Lin, K.L.: The influence of municipal solid waste incinerator fly ash slag blended in cement pastes. Cem. Concr. Res. 35(5), 979–986 (2005)CrossRefGoogle Scholar
- 9.Wang, K.-S., Lin, K.-L., Huang, Z.-Q.: Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cem. Concr. Res. 31(1), 97–103 (2001)CrossRefGoogle Scholar
- 10.Dyer, T.D., Dhir, R.K.: Hydration reactions of cement combinations containing vitrified incinerator fly ash. Cem. Concr. Res. 34(5), 849–856 (2004)CrossRefGoogle Scholar
- 11.Lin, K.L., Wang, K.S., Tzeng, B.Y., Lin, C.Y.: The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash. Waste Manag. 24(2), 199–205 (2004)CrossRefGoogle Scholar
- 12.Lin, K.L., Wang, K.S., Tzeng, B.Y., Lin, C.Y.: The reuse of municipal solid waste incinerator fly ash slag as a cement substitute. Resour. Conserv. Recycl. 39(4), 315–324 (2003)CrossRefGoogle Scholar
- 13.Lin, K.L., Wang, K.S., Lin, C.Y., Lin, C.H.: The hydration properties of pastes containing municipal solid waste incinerator fly ash slag. J. Hazard. Mater. 109(1–3), 173–181 (2004)CrossRefGoogle Scholar
- 14.Saccani, A.A.: Influence of the pozzolanic fraction obtained from vitrified bottom-ashes from MSWI on the properties of cementitious composites. Mater. Struct. 38(3), 367–371 (2005)CrossRefGoogle Scholar
- 15.Lin, K.L., Chang, W.C., Lin, D.F.: Pozzolanic characteristics of pulverized incinerator bottom ash slag. Constr. Build. Mater. 22(3), 324–329 (2008)MathSciNetCrossRefGoogle Scholar
- 16.Lin, K.L., Lin, D.F.: Pozzolanic reactivity of the synthetic slag from municipal solid waste incinerator cyclone ash and scrubber ash. J. Air Waste Manag. Assoc. 56(4), 569–574 (2006)CrossRefGoogle Scholar
- 17.Lee, T.-C., Wang, W.-J., Shih, P.-Y.: Slag-cement mortar made with cement and slag vitrified from MSWI fly-ash/scrubber-ash and glass frit. Constr. Build. Mater. 22(9), 1914–1921 (2008)CrossRefGoogle Scholar
- 18.BSI: Methods of Testing Cement. Pozzolanicity Test for Pozzolanic Cements BS EN 196–5:2005. British Standards Online, London (2005)Google Scholar
- 19.CA, P.: Portland Cement, Concrete and Heat of Hydration. Concrete Technology Today, London (1997)Google Scholar
- 20.Day, R.L., Shi, C.: Influence of the fineness of pozzolan on the strength of lime natural-pozzolan cement pastes. Cem. Concr. Res. 24(8), 1485–1491 (1994)CrossRefGoogle Scholar
- 21.Shannag, M.J., Yeginobali, A.: Properties of pastes, mortars and concretes containing natural pozzolan. Cem. Concr. Res. 25(3), 647–657 (1995)CrossRefGoogle Scholar
- 22.Chandra, S.: Waste Materials Used in Concrete Manufacturing. Noyes Publications, Westwood (1997)Google Scholar
- 23.Shi, C., Wu, Y., Riefler, C., Wang, H.: Characteristics and pozzolanic reactivity of glass powders. Cem. Concr. Res. 35(5), 987–993 (2005)CrossRefGoogle Scholar
- 24.Mehta, P.K., Aïtcin, P.C.: Principles underlying production of high-performance concrete. Cem. Concr. Aggreg. 12(2), 70–78 (1990)CrossRefGoogle Scholar
- 25.Taylor, H.F.W.: Cement Chemistry, 2nd edn. Thomas Telford Services Ltd., London (1997)CrossRefGoogle Scholar
- 26.Isaia, G.C., Gastaldini, A.L.G., Moraes, R.: Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cem. Concr. Compos. 25(1), 69–76 (2003)CrossRefGoogle Scholar
- 27.Binici, H., Aksogan, O., Cagatay, I.H., Tokyay, M., Emsen, E.: The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP). Powder Technol. 177(3), 140–147 (2007)CrossRefGoogle Scholar
- 28.Mostafa, N.Y., El-Hemaly, S.A.S., Al-Wakeel, E.I., El-Korashy, S.A., Brown, P.W.: Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag. Cem. Concr. Res. 31(6), 899–904 (2001)CrossRefGoogle Scholar
- 29.Roy, D.M., Idorn, G.M.: Hydration structure and properties of blast furnace slag cements. In: ACI Technical Paper, pp. 444–457 (1982)Google Scholar
- 30.Bensted, J., Barnes, P. (eds.): Structure and Performance of Cements, 2nd edn. Spoon Press, London (2002)Google Scholar
- 31.Glasser, F.P.: Properties of cement waste composites. Waste Manag. 16(1–3), 159–168 (1996)CrossRefGoogle Scholar
- 32.Papadakis, V.G., Tsimas, S.: Greek supplementary cementing materials and their incorporation in concrete. Cem. Concr. Compos. 27(2), 223–230 (2005)CrossRefGoogle Scholar
- 33.ACI: Manual of Concrete Practice, Part 2. American Concrete Institute, Detroit (2002)Google Scholar
- 34.Dyer, T.D., Halliday, J.E., Dhir, R.K.: An investigation of the hydration chemistry of ternary blends containing cement kiln dust. J. Mater. Sci. 34(20), 4975–4983 (1999)CrossRefGoogle Scholar
- 35.Wild, S., Khatib, J.M.: Portlandite consumption in metakaolin cement pastes and mortars. Cem. Concr. Res. 27(1), 137–146 (1997)CrossRefGoogle Scholar
- 36.Sánchez de Rojas, M.I., Luxán, M.P., Frías, M., García, N.: The influence of different additions on portland cement hydration heat. Cem. Concr. Res. 23(1), 46–54 (1993)CrossRefGoogle Scholar