Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Complex Effluent Streams as a Potential Source of Volatile Fatty Acids


The recovery of volatile fatty acids (VFA), from complex effluent streams deriving from numerous sources has been an area of research interest for more than a century. In the current era, technological and economic development is widely based on the limited global petroleum resources. Regardless the scarcity faced in coal based fuels, VFA are still extensively and in most cases solely, synthesised from petroleum. With the constantly rising awareness of the environmental impact the carbon based economy has created, research has been focused in developing alternative methods of their production. These include fermentation, anaerobic digestion and recovery from discharged chemical and industrial plants effluents. During these processes, the hydrolysis of target solid wastes followed by the microbial conversion of them to biodegradable organic, content results in the production of intermediate VFA, commonly acetate and butyrate. These, are detected at varying concentrations in the effluent streams and mixed liquors of the reactor systems. Their concentration is depending on hydraulic, retention and organic loading rates. Several studies have shown possible environmental and commercial benefits using various techniques for their separation and recovery. Among these, extensively applied has been reactive extraction. Currently, membrane filtration is most prominent as a source separation process in comparison to integral wastewater treatment. VFA reclamation benefits include the formulation of a valorisized waste effluent that can be further processed for the recovery of valuable nutrients, the relief of municipal treatment plants and the recycle and re-use of favorable nutrients and chemicals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Boyacá, P., Corre, C.: Production of propionic acid. Lait 75, 453–461 (1995)

  2. 2.

    Earnshaw, A., Greenwood, N.: Chemistry of the Elements. Butterworth-Heinemann, Oxford (1997)

  3. 3.

    Baird, C., Cann, M.: Environmental Chemistry. W. H. Freeman, New York (2012)

  4. 4.

    McMurry, J.: Organic Chemistry. Brooks/Cole, Pacific Grove (2000)

  5. 5.

    Belafi-Bako, K., Nemestothy, N., Gubicza, L.: A study on applications of membrane techniques in bioconversion of fumaric acid to L-malic acid. Desalination 162, 301–306 (2004)

  6. 6.

    Katikaneni, S.P., Cheryan, M.: Purification of fermentation-derived acetic acid by liquid–liquid extraction and esterification. Ind. Eng. Chem. Res. 41, 2745–2752 (2002)

  7. 7.

    Kumar, S., Babu, B.V.: Separation of carboxylic acids from waste water via reactive extraction. International Convention on Water Resources Development and Management (ICWRDM), Pilani, India (2008)

  8. 8.

    Kim, J.-O., Somiya, I., Shin, E.-B., Bae, W., Kim, S.-K., Kim, R.-H.: Application of membrane-coupled anaerobic volatile fatty acids fermentor for dissolved organics recovery from coagulated raw sludge. Water Sci. Technol. 45, 167–174 (2002)

  9. 9.

    Rittmann, B.E., McCarty, P.L.: Environmental Biotechnology, Principles and Applications. McGraw-Hill, Singapore (2001)

  10. 10.

    Popken, T., Gotze, L., Gmehling, J.: Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis. Ind. Eng. Chem. Res. 39, 2601–2610 (2000)

  11. 11.

    Omar, F.N., Rahman, N.A., Hafid, H.S., Yee, P.L., Hassan, M.A.: Separation and recovery of organic acids from fermented kitchen waste by an integrated process. Afr. J. Biotechnol. 8, 5807–5813 (2009)

  12. 12.

    Omar, W.N.N., Nordin, N., Mohamed, M., Amin, N.A.S.: A two-step biodiesel production from waste cooking oil, optimization of pre-treatment step. J. Appl. Sci. 9, 3098–3103 (2009)

  13. 13.

    Panepinto, D., Genon, G.: Carbon dioxide balance and cost analysis for different solid waste management scenarios. Waste Biomass Valoriz. (2012). doi:10.1007/s12649-012-9120-z

  14. 14.

    Posada, J.A., Cardona, C.A.: Propionic acid production from raw glycerol using commercial and engineered strains. Ind. Eng. Chem. Res. 51, 2354–2361 (2012)

  15. 15.

    Pradel, M., Pacaud, T., Cariolle, M.: Valorisation of organic wastes through agricultural fertilization, coupling models to assess the effects of spreader performances on nitrogenous emissions and related environmental impacts. Waste Biomass Valor. (2012). doi:10.1007/s12649-012-9162-2

  16. 16.

    Salminen, E.A., Rintala, J.A.: Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste, effect of hydraulic retention time and loading. Water Res. 36, 3175–3182 (2002)

  17. 17.

    Szabo, G.T., More, G., Ramadan, Y.: Filtration of organic solutes on reverse osmosis membrane. Effect of counter-ions. J. Memb. Sci. 188, 295–302 (1996)

  18. 18.

    Honda, H., Toyama, Y., Takahashi, H., Nakazeko, T., Kobayashi, T.: Effective lactic acid production by two-stage extractive fermentation. J. Ferment. Bioeng. 79, 589–593 (1995)

  19. 19.

    Lee, S.Y., Choi, J.-I., Wong, H.H.: Recent advances in polyhydroxyalkanoate production by bacterial fermentation, mini-review. Int. J. Biol. Macromol. 25, 31–36 (1999)

  20. 20.

    Liu, P., Jarboe, L.R.: Metabolic engineering of biocatalysts for carboxylic acids production. Comput. Struct. Biotechnol. J. 3. (2012). doi:10.5936/csbj.201210011

  21. 21.

    Narang, A., Konopka, A., Ramkrishna, D.: The dynamics of microbial growth on mixtures of substrates in batch reactors. Theor. Biol. J. 184, 301–317 (1997)

  22. 22.

    Zacharof, M.P., Lovitt, R.W.: Use of complex effluent streams as a potential source of volatile fatty acids (VFA)—a review article. The 4th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng12), Porto, WasteEng Conference Series (2012)

  23. 23.

    Zacharof, M.P., Lovitt, R.W.: The use of mixed effluent liquid wastes as a source of valuable nutrients. In: Popov, V., Itoh, H., Brebbia, C.A. (eds.) Waste Management and the Environment, vol. VI, pp. 335–342. WIT Press, Southampton (2012)

  24. 24.

    Zacharof, M.P., Lovitt, R.W.: The utilisation of anaerobic digester effluent streams as a potential source of nutrients. 4th International Symposium on Energy from Biomass and Waste. IWWG-International Waste Working Group, San Servolo, Venice, Italy (2012)

  25. 25.

    Zacharof, M.P., Lovitt, R.W.: The recovery of volatile fatty acids (VFA) from mixed effluent streams using membrane technology, a literature review. 4th International Symposium on Energy from Biomass and Waste. IWWG-International Waste Working Group, San Servolo, Venice, Italy (2012)

  26. 26.

    Lovitt, R.W., Zacharof, M.P., Gerardo, M.L. Nutrient recovery from sludge using filtration systems. 17th European Biosolids and Organic Resources Conference, Leeds, UK (2012)

  27. 27.

    Hallenbeck, P.C., Ghosh, D.: Advances in fermentative biohydrogen production, the way forward? Trends Biotechnol. 27, 287–297 (2009)

  28. 28.

    Keshav, A., Chand, S., Wasewar, K.L.: Equilibrium studies for extraction of propionic acid using tri-n-butyl phosphate in different solvents. J. Chem. Eng. Data 53, 1424–1430 (2008)

  29. 29.

    Keshav, A., Chand, S., Wasewar, K.L.: Recovery of propionic acid from aqueous phase by reactive extraction using quaternary amine (Aliquot 336) in various diluents. Chem. Eng. J. 152, 95–102 (2009)

  30. 30.

    Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes. Appl. Microbiol. Biotechnol. 77(1), 23–35 (2007)

  31. 31.

    Kleerebezem, R., van Loosdrecht, M.C.M.: Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18, 207–212 (2007)

  32. 32.

    Yang, S.T.: Bioprocessing for Value-Added Products from Renewable Resources, New Technologies and Application. Elsevier, New York (2006)

  33. 33.

    Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A.: Production of bionergy and biochemicals from industrial agricultural wastewater. Trends Biotechnol. 22, 477–485 (2004)

  34. 34.

    Acros-Hernandez, M.V., Pratt, S., Laycock, B., Johansson, P., Werker, A., Lant, P.A.: Waste activated sludge as biomass for production of commercial-grade polyhydroxyalkanoate (PHA). Waste Biomass Valor. (2012). doi:10.1007/s12649-012-9165-z

  35. 35.

    Grundmann, V., Bilitewski, B., Zentner, A., Wonschik, C.-R., Focke, M.: Hydrolysis and anaerobic co-fermentation of different kinds of biodegradable polymers. Waste Biomass Valor. (2012). doi:10.1007/s12649-012-9165-z

  36. 36.

    Takabatake, H., Satoh, H., Mino, T., Matsuo, T.: PHA (polyhydroxyalkanoate) production potential of activated sludge treating wastewater. Water Sci. Technol. 45, 119–126 (2002)

  37. 37.

    Umpuch, C., Galier, S., Kanchanatawee S., Roux-de Balmann, H.: Nanofiltration as a purification step in production process of organic acids, selectivity improvement by addition of inorganic salt. Process Biochem. 45, 1763–1768 (2010)

  38. 38.

    Bouchoux, A., Roux-de Balmann, H., Lutin, F.: Nanofiltration of glucose and sodium lactate solutions, variations of retention between single- and mixed-solute solutions. J. Memb. Sci. 258, 123–132 (2005)

  39. 39.

    Kim, J.-O., Kim, S.-K., Kim, R.-H.: Filtration performance of ceramic membrane for the recovery of volatile fatty acids from liquid organic sludge. Desalination 172, 119–127 (2005)

  40. 40.

    Afonso, M.D.: Assessment of NF and RO for the potential concentration of acetic acid and furfural from the condensate of eucalyptus spent sulphite liquor. Sep. Purif. Technol. 99, 86–90 (2012)

  41. 41.

    Joglekar, H.G., Rahman, I., Babu, S., Kulkarni, B.D., Joshi, A.: Comparative assessment of downstream processing options from lactic acid. Sep. Purif. Technol. 52, 1–17 (2006)

  42. 42.

    Wasewar, K.L., Yawalkar, A.A., Moulijin, J.A., Pangarkar, V.G.: Fermentation of glucose to lactic acid coupled with reactive extraction, a review. Ind. Eng. Chem. Res. 43, 5969–5982 (2004)

  43. 43.

    Wasewar, K.L., Heesink, A.B.M., Vestersteeg, G.F., Pangarkar, V.G.: Reactive extraction of lactic acid using alamine 336 in MIBK, equilibria and kinetics. J. Biotechnol. 97, 59–68 (2002)

  44. 44.

    Mostafa, N.A.: Production and recovery of volatile fatty acids from fermentation broth. Energy Convers. Manag. 40, 1543–1553 (1999)

  45. 45.

    Weng, Y.-H., Wei, H.-J., Tsai, T.-Y., Chen, W.-H., Wei, T.-Y., Hwang, W.-S.: Separation of acetic acid from xylose by nanofiltration. Sep. Purif. Technol. 67, 95–102 (2009)

  46. 46.

    Cao, X., Yun, H.S., Koo, Y.-M.: Recovery of L-(+)-lactic acid by anion exchange resin Amberlite IRA-400. Biochem. Eng. J. 11, 189–196 (2002)

  47. 47.

    Solichien, M.S., O’Brien, D., Hammond, E.G., Glatz, C.E.: Membrane-based extractive fermentation to produce propionic and acetic acids, toxicity and mass transfer considerations. Enzyme Microb. Technol. 17, 23–31 (1995)

  48. 48.

    Hong, Y.K., Hong, W.H., Han, D.H.: Application of reactive extraction to recovery of carboxylic acids. Biotechnol. Bioprocess Eng. 6, 386–394 (2001)

  49. 49.

    Zeikus, J.G., Jain, M.K., Elankovan, P.: Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51, 545–552 (1999)

  50. 50.

    Wasewar, K.L., Keshav, A., Seema, A.: Physical extraction of propionic acid. IJRRAS 3, 290–302 (2010)

  51. 51.

    Tamada, J., Kertes, A.S., King, C.J.: Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modelling. Ind. Eng. Chem. Res. 29, 1319–1326 (1990)

  52. 52.

    Adams, M., Moss, M.O.: Food Microbiology. RCS Publishing, Cambridge (2008)

  53. 53.

    Kovarova, K., Egli, T.: Growth kinetics of suspended microbial cells, from single-substrate controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998)

  54. 54.

    Nishio, N., Nakashimada, Y.: Recent development of anaerobic digestion processes for energy recovery from wastes. Biosci. Bioeng. J. 103, 105–112 (2007)

  55. 55.

    Tessier, L., Bouchard, P., Rahni, M.: Separation and purification of benzylpenicillin produced by fermentation using coupled ultrafiltration and nanofiltration technologies. Biotechnol. J. 116, 79–89 (2005)

  56. 56.

    Stanbury, P.F., Whitaker, A.: Principles of Fermentation Technology. Pergamon Press, Oxford (1987)

  57. 57.

    Ratledge, C., Kristiansen, B.: Basic Biotechnology. Cambridge University Press, New York (2006)

  58. 58.

    Bailey, J., Ollis, D.F.: Biochemical Engineering Fundamentals. McGraw-Hill, Tokyo (1977)

  59. 59.

    Bu’lock, J.D., Kristiansen, B.: Basic Biotechnology. Academic Press, New York (1978)

  60. 60.

    Pronk, W., Palmquist, H., Biebow, M., Boller, M.: Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Res. 2006, 1405–1412 (2006)

  61. 61.

    Choi, J.-H., Fukushi, K., Yamamoto, K.: A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep. Purif. Technol. 59, 17–25 (2008)

  62. 62.

    Choo, K.-H., Lee, C.-H.: Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Res. 30(8), 1771–1780 (1996)

  63. 63.

    Zacharof, M.P., Lovitt, R.W.: Modelling and simulation of cell growth dynamics, substrate consumption and lactic acid production kinetics of Lactococcus lactis. Biotechnol. Bioeng. (2012). doi:10.1007/s12257-012-0477-4

  64. 64.

    Zacharof, M.P., Lovitt, R.W.: Partially chemically defined liquid medium development for intensive propagation of industrial fermentation lactobacilli strains. (2012). doi:10.1007/s13213-012-0581-x

  65. 65.

    Hoefnagel, M.H.N.: Metabolic engineering of lactic acid bacteria, the combined approach, kinetic modelling, metabolic control and experimental analysis. Microbiol. J. 148, 1003–1013 (2002)

  66. 66.

    Hofvendahl, K., Åkerberg, C., Zacchi, G., Hahn-Hagerdal, B.: Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis. Appl. Microbiol. Biotechnol. 52, 163–169 (1999)

  67. 67.

    Hofvendahl, K., Hahn-Hagerdal, B.: Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26, 87–107 (2000)

  68. 68.

    Jung, I., Lovitt, R.W.: A comparative study of an intensive malolactic transformation of cider using Lactobacillus brevis and Oenococcus oeni in a membrane bioreactor. Appl. Microbiol. Biotechnol. 37, 727–740 (2010)

  69. 69.

    Jung, I., Lovitt, R.W.: A comparative study of the growth of lactic acid bacteria in a pilot scale membrane bioreactor. J. Chem. Technol. Biotechnol. 85, 1250–1259 (2010)

  70. 70.

    Jung, I., Oh, M.K., Cho, Y.C., Kong, I.S.: The viability to a wall shear stress and propagation of Bifidobacterium longum in the intensive membrane bioreactor. Appl. Microbiol. Biotechnol. 92, 939–949 (2011)

  71. 71.

    Pastor, L., Marti, N., Bouzas, A., Seco, A.: Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresour. Technol. 99, 4817–4824 (2008)

  72. 72.

    Mountfort, D.O., Asher, R.A.: Changes in proportions of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste. Appl. Microbiol. Biotechnol. 35, 648–654 (1978)

  73. 73.

    Cicek, N.: A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can. Biosyst. Eng. J. 45, 637–646 (2003)

  74. 74.

    Mshandete, A.M., Bjornsson, L., Kivaisi, A.K., Rubindamayugi, M.S.T., Mattiasson, B.: Two-stage anaerobic digestion of aerobic pre-treated sisal leaf decortications residues, hydrolases activities and biogas production profile. Afr. J. Biotechnol. Res. 2, 211–218 (2008)

  75. 75.

    Kafle, G.K., Kim, S.H.: Anaerobic treatment of apple waste with swine manure for biogas production, Batch and continuous operation. Appl. Energy 103, 61–72 (2012)

  76. 76.

    Li, Y., Park, S.Y., Zhu, J.: Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 15, 821–826 (2011)

  77. 77.

    Song, H., Lee, S.Y.: Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 29, 352–361 (2006)

  78. 78.

    Appels, L., Baeyens, J., Degreve, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008)

  79. 79.

    Wilkie, A.C.: Anaerobic Digestion, Biology and Benefits. Natural Resource, Agriculture and Engineering Service, Cornell University, Ithaca (2005)

  80. 80.

    Kertes, A.S., King, C.J.: Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28, 269–282 (1986)

  81. 81.

    Teng, S.-X., Tong, Z.-H., Li, W.-W., Wang, S.-G., Sheng, G.-P., Shi, X.-Y., Liu, X.-W., Yu, H.-Q.: Electricity generation from mixed volatile fatty acids using microbial fuel cells. Appl. Microbiol. Biotechnol. 87, 2365–2372 (2010)

  82. 82.

    Ugwuanyi Obeta, J., Harvey, L.M., McNeil, B.: Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophillic aerobic digestion of model high strength agricultural waste. Bioresour. Technol. 96, 707–719 (2005)

  83. 83.

    Maurer, M., Pronk, W., Larsen, T.A.: Treatment processes for source-separated urine. Water Res. 40, 3151–3166 (2006)

  84. 84.

    Mack, C., Burgess, J.E., Duncan, J.R.: Membrane bioreactors for metal recovery from wastewater, a review. Water Res. 30, 521–532 (2004)

  85. 85.

    Mumtaz, T., Abd-Aziz, S., Abdul Rahman, N.A., Yee, P.L., Shirai, Y., Hassan, M.A.: Pilot-scale recovery of low molecular weight organic acids from anaerobically treated palm oil mill effluent (POME) with energy integrated system. Afr. J. Biotechnol. 7, 3900–3905 (2008)

  86. 86.

    Ward, A.J., Hobbs, P.J., Hilliman, P.J., Jones, D.L.: Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99, 7928–7940 (2008)

  87. 87.

    Li, Y., Chen, J., Lun, S.Y.: Biotechnological production of pyruvic acid. Appl. Microbiol. Biotechnol. 57, 451–459 (2001)

  88. 88.

    Sohrabi, M.R., Madaeni, S.S., Khosravi, M., Ghaedi, A.M.: Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination 267, 93–100 (2010)

  89. 89.

    Masse, L., Masse, D.I., Pellerin, Y.: The use of membranes for the treatment of manure, a critical literature review. Biosyst. Eng. 98, 371–380 (2007)

  90. 90.

    Horiuchi, J.-I., Shimizu, T., Tada, K., Kanno, T., Kobayashi, M.: Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour. Technol. 82, 209–213 (2002)

  91. 91.

    Lee, S.U., Jung, K., Park, G.W., Seo, C., Hong, Y.K., Hong, W.H., Chang, H.N.: Bioprocessing aspects of fuels and chemicals from biomass. Korean J. Chem. Eng. 29, 831–850 (2012)

  92. 92.

    Ali, N., Halim, N.S., Jusoh, A., Endut, A.: The formation and characterisation of an asymmetric nanofiltration membrane for ammonia-nitrogen removal, effect of shear rate. Bioresour. Technol. 101, 1459–1465 (2010)

  93. 93.

    Bellona, C., Drewes, J.E., Pei, X., Amy, G.: Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Res. 38, 2795–2809 (2004)

  94. 94.

    Berneo, M.A., Maturana, A., Estévez, S.L., Rodríguez, M.S., Giraldo, E.: Use of electrodialysis as a VFA recovery process from acidogenic of MSW synthetic leachates. Universidad de Los Andes, Facultad de Ingeniera Revista de Ingeniería 1, 97–102 (2000)

  95. 95.

    Agenson, K.O., Oh, J.-I., Urase, T.: Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes, controlling parameters of process. J. Memb. Sci. 225, 91–103 (2003)

  96. 96.

    Bouchoux, A., Roux-de Balmann, H., Lutin, F.: Introduction of nanofiltration in a production process of fermented organic acids. 9th World Filtration Congress—WCF9. New Orleans (2004)

  97. 97.

    Bowen, W.R., Mohammad, A.W., Hilal, N.: Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy. J. Memb. Sci. 126, 91–105 (1997)

  98. 98.

    Kosutic, K., Kunst, B.: Removal of organics from aqueous solutions by commercial RO and NF membranes of characterized porosities. Desalination 142, 47–56 (2002)

  99. 99.

    Labbaci, A., Douani, M., Kyuchoukov, G.: Treatment of effluents issued from agro-food industries by liquid–liquid extraction of malic and lactic acids using tri-n-octylamine and tri-n-butyl phosphate. Ind. Eng. Chem. Res. 51, 12471–12478 (2012)

  100. 100.

    Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.U., Watanabe, Y.: Rejection of micropollutants (disinfection by products, endocrine disrupting compounds and pharmaceutically active compounds) by NF/RO. J. Memb. Sci. 227, 113–121 (2003)

  101. 101.

    Al-Amoudi, A.S.: Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes, a review. Desalination 259, 1–10 (2010)

  102. 102.

    Al-Amoudi, A.S., Farooque, A.M.: Performance restoration and autopsy of NF membranes used in seawater pretreatment. Desalination 178, 261–271 (2005)

  103. 103.

    Al-Amoudi, A.S., Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Memb. Sci. 303, 4–28 (2007)

  104. 104.

    Al-Amoudi, A.S., Williams, P., Al-Hobaib, A.S., Lovitt, R.W.: Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection. Appl. Surf. Sci. 254, 3983–3992 (2008)

  105. 105.

    Al-Amoudi, A.S., Williams, P., Mandale, S., Lovitt, R.W.: Cleaning results of new and fouled nanofiltration membrane charactirized by zeta potential and permeability. Sep. Purif. Technol. 54, 234–240 (2007)

  106. 106.

    Van der Bruggen, S.J.S., Wilms, D., Vandecasteele, C.: Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Memb. Sci. 156, 29–41 (1999)

  107. 107.

    Freger, V., Gilron, J., Belfer, S.: TFC polyamide membranes modified by grafting of hydrophilic polymers, and FT-IR/AFM/TEM study. J. Memb. Sci. 209, 283–292 (2002)

  108. 108.

    Nystrom, M.B., Butylina, S., Platt, S.: NF retention and critical flux of small hydrophilic/hydrophobic molecules. J. Memb. Sci. 60, 1–6 (1991)

  109. 109.

    Jevons, K., Awe, M.: Economic benefits of membrane technology vs. evaporator. Desalination 250, 961–963 (2010)

  110. 110.

    Nath, K.: Membrane Separation Processes. Prentice Hall of India, New Delhi (2008)

  111. 111.

    Van Reis, R., Zydney, A.: Bioprocess membrane technology. J. Memb. Sci. 297, 16–50 (2007)

  112. 112.

    Tchobanoglous, G., Burton, L.F., Stensel, D.H.: Wastewater Engineering, Treatment and Reuse. McGraw-Hill, Singapore (2004)

  113. 113.

    Doran, P.M.: Bioprocess Engineering Principles. Academic Press, London (1995)

  114. 114.

    Van der Bruggen, V., Vandecasteele, C.: Removal of pollutants from surface water and groundwater by nanofiltration, overview of possible applications in the drinking water industry. Environ. Pollut. 122, 435–445 (2003)

  115. 115.

    Teela, A., Huber, G.W., Ford, D.M.: Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes. J. Memb. Sci. 378, 495–502 (2011)

  116. 116.

    Bellona, C., Drewes, J.E.: The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Memb. Sci. 249, 227–234 (2005)

  117. 117.

    Baker, R.W.: Membrane Technology and Applications. Wiley, Hoboken (2000)

  118. 118.

    Marcel, M.: Basic Principles of Membrane Technology. Kluwer, Dordrecht (1996)

  119. 119.

    Koros, W.J., Fleming, G.K.: Membrane-based gas separation. J. Memb. Sci. 83, 1–8 (1993)

  120. 120.

    Mungray, A., Murthy, Z.P.V.: Comparative performance study of four nanofiltration in the separation of mercury and chromium. Ionics 18, 811–816 (2012)

  121. 121.

    Coulson, J.M., Richardson, J.F.: Chemical Engineering, Chemical and Biochemical Reactors and Process Control. Pergamon Press, Oxford (1994)

  122. 122.

    Bowen, W.R., Welfoot, J.S.: Modelling of membrane nanofiltration-pore size distribution effects. Chem. Eng. Sci. 57, 1393–1407 (2002)

  123. 123.

    Schaep, J., Van der Bruggen, B., Vandecasteele, C., Wilms, D.: Influence of ion size and charge in nanofiltration. Sep. Purif. Technol. 178, 185–193 (1998)

  124. 124.

    Ramirez, P., Mafé, S., Manzares, J.A., Pellicer, J.: Membrane potential of bipolar membranes. J. Electroanal. Chem. 404, 187–193 (1996)

  125. 125.

    Tsuru, T., Nakao, S.-I., Kimura, S.: Ion separation by bipolar membranes in reverse osmosis. J. Memb. Sci. 108, 269–278 (1995)

  126. 126.

    Schafer, A.I., Pihlajamaki, A., Fane, A.G., Waite, T.D., Nystrom, M.: Natural organic matter removal by nanofiltration, effects of solution chemistry on retention of low molar mass acids versus bulk organic matter. J. Memb. Sci. 242, 73–85 (2004)

  127. 127.

    Gonzalez, M.I., Alvarez, S., Rira, F.A., Alvarez, R.: Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228, 84–96 (2008)

  128. 128.

    Hong, S.U., Ouyang, L., Bruening, M.L.: Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. J. Memb. Sci. 327, 2–5 (2009)

  129. 129.

    Bargeman, G., Steensma, M., ten Kate, A., Westerink, J.B., Demmer, R.L.M., Bakkenes, H., Manuhutu, C.F.H.: Nanofiltration as energy-efficient solution for sulfate waste in vacuum salt production. Desal. 246, 87–95 (2009)

  130. 130.

    Siddharth, S.: Green energy-anaerobic digestion. 4th WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Elounda, Greece (2006)

  131. 131.

    Lipnizki, J.: Optimisation of membrane processes in white biotechnology. Desalination 224, 105–110 (2008)

  132. 132.

    Salminen, E.A., Rintala, J.A.: Anaerobic digestion of organic solid poultry slaughterhouse waste—a review. Bioresour. Technol. 83, 13–26 (2002)

  133. 133.

    Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129, 170–176 (2013)

  134. 134.

    Amon, T., et al.: Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98, 3204–3212 (2007)

  135. 135.

    Bauer, A., Mayr, H., Hopfner-Sixt, K., Amon, T.: Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. J. Biotechnol. 142, 56–63 (2009)

  136. 136.

    Kumar, S., Datta, D., Babu, B.V.: Experimental data and theoretical (che-model using the differential evolution approach and linear solvation energy relationship model) predictions on reactive extraction of monocarboxylic acids using tri-n-octylamine. J. Chem. Eng. Data 55, 4290–4300 (2010)

  137. 137.

    Van der Bruggen, B., Braeken, L., Vandecasteele, C.: Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds. Desalination 147, 281–288 (2002)

  138. 138.

    Masse, L., Masse, D.I., Pellerin, Y.: The effect of pH on the separation of manure nutrients with reverse osmosis membranes. J. Memb. Sci. 325, 914–919 (2008)

  139. 139.

    Masse, L., Masse, D.I., Pellerin, Y., Dubreil, J.: Osmotic pressure and substrate resistance during the concentration of manure nutrients by reverse osmosis membranes. J. Memb. Sci. 348, 28–33 (2010)

  140. 140.

    Li, S.Z., Li, X.Y., Cui, Z.F., Wang, D.Z.: Application of ultrafiltration to improve the extraction of antibiotics. Sep. Purif. Technol. 34, 115–123 (2004)

  141. 141.

    Isa, M.H.M., Coraglia, D.E., Frazier, R.A., Jauregi, P.: Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. J. Memb. Sci. 296, 51–57 (2007)

  142. 142.

    Yu, C.-H., Wu, C.-H., Lin, C.-H., Hsiao, C.-H., Lin, C.-F.: Hydrophobicity and molecular weight of humic substances on ultrafiltration fouling and resistance. Sep. Purif. Technol. 64, 206–212 (2008)

  143. 143.

    Yeom, C.K., Lee, S.H., Lee, J.M.: Effect of the ionic characteristics of charged membranes on the permeation of anionic solutes in reverse osmosis. J. Memb. Sci. 169, 237–247 (2000)

  144. 144.

    García-Molina, V., Lyko, S., Esplugas, S., Wintgens, T., Melin, T.: Ultrafiltration of aqueous solutions containing organic polymers. Desalination 189, 110–118 (2006)

Download references


The authors would like to thank Dr. Esteves Sandra and Pr. Guwy Alan, Sustainable Environment Research Centre (SERC), Glamorgan University for their valuable comments to the writing of the research summarised here. The present work benefited from the input of Dr. Charalambidou Anna, Department of Humanities, School of Humanities and Social Sciences, European University of Cyprus who provided helpful comments to the writing of this manuscript. This project was supported by Low Carbon Research Institute (LCRI) project grant title “Wales H2 Cymru”.

Author information

Correspondence to Myrto-Panagiota Zacharof.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zacharof, M., Lovitt, R.W. Complex Effluent Streams as a Potential Source of Volatile Fatty Acids. Waste Biomass Valor 4, 557–581 (2013).

Download citation


  • Waste effluents
  • Fermentation
  • Volatile fatty acids
  • Recovery
  • Nanofiltration