Waste and Biomass Valorization

, Volume 4, Issue 3, pp 557–581 | Cite as

Complex Effluent Streams as a Potential Source of Volatile Fatty Acids

  • Myrto-Panagiota ZacharofEmail author
  • Robert W. Lovitt
Original Paper


The recovery of volatile fatty acids (VFA), from complex effluent streams deriving from numerous sources has been an area of research interest for more than a century. In the current era, technological and economic development is widely based on the limited global petroleum resources. Regardless the scarcity faced in coal based fuels, VFA are still extensively and in most cases solely, synthesised from petroleum. With the constantly rising awareness of the environmental impact the carbon based economy has created, research has been focused in developing alternative methods of their production. These include fermentation, anaerobic digestion and recovery from discharged chemical and industrial plants effluents. During these processes, the hydrolysis of target solid wastes followed by the microbial conversion of them to biodegradable organic, content results in the production of intermediate VFA, commonly acetate and butyrate. These, are detected at varying concentrations in the effluent streams and mixed liquors of the reactor systems. Their concentration is depending on hydraulic, retention and organic loading rates. Several studies have shown possible environmental and commercial benefits using various techniques for their separation and recovery. Among these, extensively applied has been reactive extraction. Currently, membrane filtration is most prominent as a source separation process in comparison to integral wastewater treatment. VFA reclamation benefits include the formulation of a valorisized waste effluent that can be further processed for the recovery of valuable nutrients, the relief of municipal treatment plants and the recycle and re-use of favorable nutrients and chemicals.


Waste effluents Fermentation Volatile fatty acids Recovery Nanofiltration 



The authors would like to thank Dr. Esteves Sandra and Pr. Guwy Alan, Sustainable Environment Research Centre (SERC), Glamorgan University for their valuable comments to the writing of the research summarised here. The present work benefited from the input of Dr. Charalambidou Anna, Department of Humanities, School of Humanities and Social Sciences, European University of Cyprus who provided helpful comments to the writing of this manuscript. This project was supported by Low Carbon Research Institute (LCRI) project grant title “Wales H2 Cymru”.


  1. 1.
    Boyacá, P., Corre, C.: Production of propionic acid. Lait 75, 453–461 (1995)CrossRefGoogle Scholar
  2. 2.
    Earnshaw, A., Greenwood, N.: Chemistry of the Elements. Butterworth-Heinemann, Oxford (1997)Google Scholar
  3. 3.
    Baird, C., Cann, M.: Environmental Chemistry. W. H. Freeman, New York (2012)Google Scholar
  4. 4.
    McMurry, J.: Organic Chemistry. Brooks/Cole, Pacific Grove (2000)Google Scholar
  5. 5.
    Belafi-Bako, K., Nemestothy, N., Gubicza, L.: A study on applications of membrane techniques in bioconversion of fumaric acid to L-malic acid. Desalination 162, 301–306 (2004)CrossRefGoogle Scholar
  6. 6.
    Katikaneni, S.P., Cheryan, M.: Purification of fermentation-derived acetic acid by liquid–liquid extraction and esterification. Ind. Eng. Chem. Res. 41, 2745–2752 (2002)CrossRefGoogle Scholar
  7. 7.
    Kumar, S., Babu, B.V.: Separation of carboxylic acids from waste water via reactive extraction. International Convention on Water Resources Development and Management (ICWRDM), Pilani, India (2008)Google Scholar
  8. 8.
    Kim, J.-O., Somiya, I., Shin, E.-B., Bae, W., Kim, S.-K., Kim, R.-H.: Application of membrane-coupled anaerobic volatile fatty acids fermentor for dissolved organics recovery from coagulated raw sludge. Water Sci. Technol. 45, 167–174 (2002)Google Scholar
  9. 9.
    Rittmann, B.E., McCarty, P.L.: Environmental Biotechnology, Principles and Applications. McGraw-Hill, Singapore (2001)Google Scholar
  10. 10.
    Popken, T., Gotze, L., Gmehling, J.: Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis. Ind. Eng. Chem. Res. 39, 2601–2610 (2000)CrossRefGoogle Scholar
  11. 11.
    Omar, F.N., Rahman, N.A., Hafid, H.S., Yee, P.L., Hassan, M.A.: Separation and recovery of organic acids from fermented kitchen waste by an integrated process. Afr. J. Biotechnol. 8, 5807–5813 (2009)Google Scholar
  12. 12.
    Omar, W.N.N., Nordin, N., Mohamed, M., Amin, N.A.S.: A two-step biodiesel production from waste cooking oil, optimization of pre-treatment step. J. Appl. Sci. 9, 3098–3103 (2009)CrossRefGoogle Scholar
  13. 13.
    Panepinto, D., Genon, G.: Carbon dioxide balance and cost analysis for different solid waste management scenarios. Waste Biomass Valoriz. (2012). doi: 10.1007/s12649-012-9120-z Google Scholar
  14. 14.
    Posada, J.A., Cardona, C.A.: Propionic acid production from raw glycerol using commercial and engineered strains. Ind. Eng. Chem. Res. 51, 2354–2361 (2012)CrossRefGoogle Scholar
  15. 15.
    Pradel, M., Pacaud, T., Cariolle, M.: Valorisation of organic wastes through agricultural fertilization, coupling models to assess the effects of spreader performances on nitrogenous emissions and related environmental impacts. Waste Biomass Valor. (2012). doi: 10.1007/s12649-012-9162-2 Google Scholar
  16. 16.
    Salminen, E.A., Rintala, J.A.: Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste, effect of hydraulic retention time and loading. Water Res. 36, 3175–3182 (2002)CrossRefGoogle Scholar
  17. 17.
    Szabo, G.T., More, G., Ramadan, Y.: Filtration of organic solutes on reverse osmosis membrane. Effect of counter-ions. J. Memb. Sci. 188, 295–302 (1996)CrossRefGoogle Scholar
  18. 18.
    Honda, H., Toyama, Y., Takahashi, H., Nakazeko, T., Kobayashi, T.: Effective lactic acid production by two-stage extractive fermentation. J. Ferment. Bioeng. 79, 589–593 (1995)CrossRefGoogle Scholar
  19. 19.
    Lee, S.Y., Choi, J.-I., Wong, H.H.: Recent advances in polyhydroxyalkanoate production by bacterial fermentation, mini-review. Int. J. Biol. Macromol. 25, 31–36 (1999)CrossRefGoogle Scholar
  20. 20.
    Liu, P., Jarboe, L.R.: Metabolic engineering of biocatalysts for carboxylic acids production. Comput. Struct. Biotechnol. J. 3. (2012). doi: 10.5936/csbj.201210011
  21. 21.
    Narang, A., Konopka, A., Ramkrishna, D.: The dynamics of microbial growth on mixtures of substrates in batch reactors. Theor. Biol. J. 184, 301–317 (1997)CrossRefGoogle Scholar
  22. 22.
    Zacharof, M.P., Lovitt, R.W.: Use of complex effluent streams as a potential source of volatile fatty acids (VFA)—a review article. The 4th International Conference on Engineering for Waste and Biomass Valorisation (WasteEng12), Porto, WasteEng Conference Series (2012)Google Scholar
  23. 23.
    Zacharof, M.P., Lovitt, R.W.: The use of mixed effluent liquid wastes as a source of valuable nutrients. In: Popov, V., Itoh, H., Brebbia, C.A. (eds.) Waste Management and the Environment, vol. VI, pp. 335–342. WIT Press, Southampton (2012)Google Scholar
  24. 24.
    Zacharof, M.P., Lovitt, R.W.: The utilisation of anaerobic digester effluent streams as a potential source of nutrients. 4th International Symposium on Energy from Biomass and Waste. IWWG-International Waste Working Group, San Servolo, Venice, Italy (2012)Google Scholar
  25. 25.
    Zacharof, M.P., Lovitt, R.W.: The recovery of volatile fatty acids (VFA) from mixed effluent streams using membrane technology, a literature review. 4th International Symposium on Energy from Biomass and Waste. IWWG-International Waste Working Group, San Servolo, Venice, Italy (2012)Google Scholar
  26. 26.
    Lovitt, R.W., Zacharof, M.P., Gerardo, M.L. Nutrient recovery from sludge using filtration systems. 17th European Biosolids and Organic Resources Conference, Leeds, UK (2012)Google Scholar
  27. 27.
    Hallenbeck, P.C., Ghosh, D.: Advances in fermentative biohydrogen production, the way forward? Trends Biotechnol. 27, 287–297 (2009)CrossRefGoogle Scholar
  28. 28.
    Keshav, A., Chand, S., Wasewar, K.L.: Equilibrium studies for extraction of propionic acid using tri-n-butyl phosphate in different solvents. J. Chem. Eng. Data 53, 1424–1430 (2008)CrossRefGoogle Scholar
  29. 29.
    Keshav, A., Chand, S., Wasewar, K.L.: Recovery of propionic acid from aqueous phase by reactive extraction using quaternary amine (Aliquot 336) in various diluents. Chem. Eng. J. 152, 95–102 (2009)CrossRefGoogle Scholar
  30. 30.
    Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes. Appl. Microbiol. Biotechnol. 77(1), 23–35 (2007)CrossRefGoogle Scholar
  31. 31.
    Kleerebezem, R., van Loosdrecht, M.C.M.: Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18, 207–212 (2007)CrossRefGoogle Scholar
  32. 32.
    Yang, S.T.: Bioprocessing for Value-Added Products from Renewable Resources, New Technologies and Application. Elsevier, New York (2006)Google Scholar
  33. 33.
    Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wrenn, B.A.: Production of bionergy and biochemicals from industrial agricultural wastewater. Trends Biotechnol. 22, 477–485 (2004)CrossRefGoogle Scholar
  34. 34.
    Acros-Hernandez, M.V., Pratt, S., Laycock, B., Johansson, P., Werker, A., Lant, P.A.: Waste activated sludge as biomass for production of commercial-grade polyhydroxyalkanoate (PHA). Waste Biomass Valor. (2012). doi: 10.1007/s12649-012-9165-z Google Scholar
  35. 35.
    Grundmann, V., Bilitewski, B., Zentner, A., Wonschik, C.-R., Focke, M.: Hydrolysis and anaerobic co-fermentation of different kinds of biodegradable polymers. Waste Biomass Valor. (2012). doi: 10.1007/s12649-012-9165-z Google Scholar
  36. 36.
    Takabatake, H., Satoh, H., Mino, T., Matsuo, T.: PHA (polyhydroxyalkanoate) production potential of activated sludge treating wastewater. Water Sci. Technol. 45, 119–126 (2002)Google Scholar
  37. 37.
    Umpuch, C., Galier, S., Kanchanatawee S., Roux-de Balmann, H.: Nanofiltration as a purification step in production process of organic acids, selectivity improvement by addition of inorganic salt. Process Biochem. 45, 1763–1768 (2010)Google Scholar
  38. 38.
    Bouchoux, A., Roux-de Balmann, H., Lutin, F.: Nanofiltration of glucose and sodium lactate solutions, variations of retention between single- and mixed-solute solutions. J. Memb. Sci. 258, 123–132 (2005)CrossRefGoogle Scholar
  39. 39.
    Kim, J.-O., Kim, S.-K., Kim, R.-H.: Filtration performance of ceramic membrane for the recovery of volatile fatty acids from liquid organic sludge. Desalination 172, 119–127 (2005)CrossRefGoogle Scholar
  40. 40.
    Afonso, M.D.: Assessment of NF and RO for the potential concentration of acetic acid and furfural from the condensate of eucalyptus spent sulphite liquor. Sep. Purif. Technol. 99, 86–90 (2012)CrossRefGoogle Scholar
  41. 41.
    Joglekar, H.G., Rahman, I., Babu, S., Kulkarni, B.D., Joshi, A.: Comparative assessment of downstream processing options from lactic acid. Sep. Purif. Technol. 52, 1–17 (2006)CrossRefGoogle Scholar
  42. 42.
    Wasewar, K.L., Yawalkar, A.A., Moulijin, J.A., Pangarkar, V.G.: Fermentation of glucose to lactic acid coupled with reactive extraction, a review. Ind. Eng. Chem. Res. 43, 5969–5982 (2004)CrossRefGoogle Scholar
  43. 43.
    Wasewar, K.L., Heesink, A.B.M., Vestersteeg, G.F., Pangarkar, V.G.: Reactive extraction of lactic acid using alamine 336 in MIBK, equilibria and kinetics. J. Biotechnol. 97, 59–68 (2002)CrossRefGoogle Scholar
  44. 44.
    Mostafa, N.A.: Production and recovery of volatile fatty acids from fermentation broth. Energy Convers. Manag. 40, 1543–1553 (1999)CrossRefGoogle Scholar
  45. 45.
    Weng, Y.-H., Wei, H.-J., Tsai, T.-Y., Chen, W.-H., Wei, T.-Y., Hwang, W.-S.: Separation of acetic acid from xylose by nanofiltration. Sep. Purif. Technol. 67, 95–102 (2009)CrossRefGoogle Scholar
  46. 46.
    Cao, X., Yun, H.S., Koo, Y.-M.: Recovery of L-(+)-lactic acid by anion exchange resin Amberlite IRA-400. Biochem. Eng. J. 11, 189–196 (2002)CrossRefGoogle Scholar
  47. 47.
    Solichien, M.S., O’Brien, D., Hammond, E.G., Glatz, C.E.: Membrane-based extractive fermentation to produce propionic and acetic acids, toxicity and mass transfer considerations. Enzyme Microb. Technol. 17, 23–31 (1995)CrossRefGoogle Scholar
  48. 48.
    Hong, Y.K., Hong, W.H., Han, D.H.: Application of reactive extraction to recovery of carboxylic acids. Biotechnol. Bioprocess Eng. 6, 386–394 (2001)CrossRefGoogle Scholar
  49. 49.
    Zeikus, J.G., Jain, M.K., Elankovan, P.: Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51, 545–552 (1999)CrossRefGoogle Scholar
  50. 50.
    Wasewar, K.L., Keshav, A., Seema, A.: Physical extraction of propionic acid. IJRRAS 3, 290–302 (2010)Google Scholar
  51. 51.
    Tamada, J., Kertes, A.S., King, C.J.: Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modelling. Ind. Eng. Chem. Res. 29, 1319–1326 (1990)CrossRefGoogle Scholar
  52. 52.
    Adams, M., Moss, M.O.: Food Microbiology. RCS Publishing, Cambridge (2008)Google Scholar
  53. 53.
    Kovarova, K., Egli, T.: Growth kinetics of suspended microbial cells, from single-substrate controlled growth to mixed-substrate kinetics. Microbiol. Mol. Biol. Rev. 62, 646–666 (1998)Google Scholar
  54. 54.
    Nishio, N., Nakashimada, Y.: Recent development of anaerobic digestion processes for energy recovery from wastes. Biosci. Bioeng. J. 103, 105–112 (2007)CrossRefGoogle Scholar
  55. 55.
    Tessier, L., Bouchard, P., Rahni, M.: Separation and purification of benzylpenicillin produced by fermentation using coupled ultrafiltration and nanofiltration technologies. Biotechnol. J. 116, 79–89 (2005)CrossRefGoogle Scholar
  56. 56.
    Stanbury, P.F., Whitaker, A.: Principles of Fermentation Technology. Pergamon Press, Oxford (1987)Google Scholar
  57. 57.
    Ratledge, C., Kristiansen, B.: Basic Biotechnology. Cambridge University Press, New York (2006)CrossRefGoogle Scholar
  58. 58.
    Bailey, J., Ollis, D.F.: Biochemical Engineering Fundamentals. McGraw-Hill, Tokyo (1977)Google Scholar
  59. 59.
    Bu’lock, J.D., Kristiansen, B.: Basic Biotechnology. Academic Press, New York (1978)Google Scholar
  60. 60.
    Pronk, W., Palmquist, H., Biebow, M., Boller, M.: Nanofiltration for the separation of pharmaceuticals from nutrients in source-separated urine. Water Res. 2006, 1405–1412 (2006)CrossRefGoogle Scholar
  61. 61.
    Choi, J.-H., Fukushi, K., Yamamoto, K.: A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep. Purif. Technol. 59, 17–25 (2008)CrossRefGoogle Scholar
  62. 62.
    Choo, K.-H., Lee, C.-H.: Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Res. 30(8), 1771–1780 (1996)CrossRefGoogle Scholar
  63. 63.
    Zacharof, M.P., Lovitt, R.W.: Modelling and simulation of cell growth dynamics, substrate consumption and lactic acid production kinetics of Lactococcus lactis. Biotechnol. Bioeng. (2012). doi: 10.1007/s12257-012-0477-4
  64. 64.
    Zacharof, M.P., Lovitt, R.W.: Partially chemically defined liquid medium development for intensive propagation of industrial fermentation lactobacilli strains. (2012). doi: 10.1007/s13213-012-0581-x
  65. 65.
    Hoefnagel, M.H.N.: Metabolic engineering of lactic acid bacteria, the combined approach, kinetic modelling, metabolic control and experimental analysis. Microbiol. J. 148, 1003–1013 (2002)Google Scholar
  66. 66.
    Hofvendahl, K., Åkerberg, C., Zacchi, G., Hahn-Hagerdal, B.: Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis. Appl. Microbiol. Biotechnol. 52, 163–169 (1999)CrossRefGoogle Scholar
  67. 67.
    Hofvendahl, K., Hahn-Hagerdal, B.: Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26, 87–107 (2000)CrossRefGoogle Scholar
  68. 68.
    Jung, I., Lovitt, R.W.: A comparative study of an intensive malolactic transformation of cider using Lactobacillus brevis and Oenococcus oeni in a membrane bioreactor. Appl. Microbiol. Biotechnol. 37, 727–740 (2010)Google Scholar
  69. 69.
    Jung, I., Lovitt, R.W.: A comparative study of the growth of lactic acid bacteria in a pilot scale membrane bioreactor. J. Chem. Technol. Biotechnol. 85, 1250–1259 (2010)CrossRefGoogle Scholar
  70. 70.
    Jung, I., Oh, M.K., Cho, Y.C., Kong, I.S.: The viability to a wall shear stress and propagation of Bifidobacterium longum in the intensive membrane bioreactor. Appl. Microbiol. Biotechnol. 92, 939–949 (2011)CrossRefGoogle Scholar
  71. 71.
    Pastor, L., Marti, N., Bouzas, A., Seco, A.: Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresour. Technol. 99, 4817–4824 (2008)CrossRefGoogle Scholar
  72. 72.
    Mountfort, D.O., Asher, R.A.: Changes in proportions of acetate and carbon dioxide used as methane precursors during the anaerobic digestion of bovine waste. Appl. Microbiol. Biotechnol. 35, 648–654 (1978)Google Scholar
  73. 73.
    Cicek, N.: A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can. Biosyst. Eng. J. 45, 637–646 (2003)Google Scholar
  74. 74.
    Mshandete, A.M., Bjornsson, L., Kivaisi, A.K., Rubindamayugi, M.S.T., Mattiasson, B.: Two-stage anaerobic digestion of aerobic pre-treated sisal leaf decortications residues, hydrolases activities and biogas production profile. Afr. J. Biotechnol. Res. 2, 211–218 (2008)Google Scholar
  75. 75.
    Kafle, G.K., Kim, S.H.: Anaerobic treatment of apple waste with swine manure for biogas production, Batch and continuous operation. Appl. Energy 103, 61–72 (2012)CrossRefGoogle Scholar
  76. 76.
    Li, Y., Park, S.Y., Zhu, J.: Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 15, 821–826 (2011)CrossRefGoogle Scholar
  77. 77.
    Song, H., Lee, S.Y.: Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 29, 352–361 (2006)CrossRefGoogle Scholar
  78. 78.
    Appels, L., Baeyens, J., Degreve, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008)CrossRefGoogle Scholar
  79. 79.
    Wilkie, A.C.: Anaerobic Digestion, Biology and Benefits. Natural Resource, Agriculture and Engineering Service, Cornell University, Ithaca (2005)Google Scholar
  80. 80.
    Kertes, A.S., King, C.J.: Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28, 269–282 (1986)CrossRefGoogle Scholar
  81. 81.
    Teng, S.-X., Tong, Z.-H., Li, W.-W., Wang, S.-G., Sheng, G.-P., Shi, X.-Y., Liu, X.-W., Yu, H.-Q.: Electricity generation from mixed volatile fatty acids using microbial fuel cells. Appl. Microbiol. Biotechnol. 87, 2365–2372 (2010)CrossRefGoogle Scholar
  82. 82.
    Ugwuanyi Obeta, J., Harvey, L.M., McNeil, B.: Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophillic aerobic digestion of model high strength agricultural waste. Bioresour. Technol. 96, 707–719 (2005)CrossRefGoogle Scholar
  83. 83.
    Maurer, M., Pronk, W., Larsen, T.A.: Treatment processes for source-separated urine. Water Res. 40, 3151–3166 (2006)CrossRefGoogle Scholar
  84. 84.
    Mack, C., Burgess, J.E., Duncan, J.R.: Membrane bioreactors for metal recovery from wastewater, a review. Water Res. 30, 521–532 (2004)Google Scholar
  85. 85.
    Mumtaz, T., Abd-Aziz, S., Abdul Rahman, N.A., Yee, P.L., Shirai, Y., Hassan, M.A.: Pilot-scale recovery of low molecular weight organic acids from anaerobically treated palm oil mill effluent (POME) with energy integrated system. Afr. J. Biotechnol. 7, 3900–3905 (2008)Google Scholar
  86. 86.
    Ward, A.J., Hobbs, P.J., Hilliman, P.J., Jones, D.L.: Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99, 7928–7940 (2008)CrossRefGoogle Scholar
  87. 87.
    Li, Y., Chen, J., Lun, S.Y.: Biotechnological production of pyruvic acid. Appl. Microbiol. Biotechnol. 57, 451–459 (2001)CrossRefGoogle Scholar
  88. 88.
    Sohrabi, M.R., Madaeni, S.S., Khosravi, M., Ghaedi, A.M.: Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination 267, 93–100 (2010)CrossRefGoogle Scholar
  89. 89.
    Masse, L., Masse, D.I., Pellerin, Y.: The use of membranes for the treatment of manure, a critical literature review. Biosyst. Eng. 98, 371–380 (2007)CrossRefGoogle Scholar
  90. 90.
    Horiuchi, J.-I., Shimizu, T., Tada, K., Kanno, T., Kobayashi, M.: Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour. Technol. 82, 209–213 (2002)CrossRefGoogle Scholar
  91. 91.
    Lee, S.U., Jung, K., Park, G.W., Seo, C., Hong, Y.K., Hong, W.H., Chang, H.N.: Bioprocessing aspects of fuels and chemicals from biomass. Korean J. Chem. Eng. 29, 831–850 (2012)CrossRefGoogle Scholar
  92. 92.
    Ali, N., Halim, N.S., Jusoh, A., Endut, A.: The formation and characterisation of an asymmetric nanofiltration membrane for ammonia-nitrogen removal, effect of shear rate. Bioresour. Technol. 101, 1459–1465 (2010)CrossRefGoogle Scholar
  93. 93.
    Bellona, C., Drewes, J.E., Pei, X., Amy, G.: Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Res. 38, 2795–2809 (2004)CrossRefGoogle Scholar
  94. 94.
    Berneo, M.A., Maturana, A., Estévez, S.L., Rodríguez, M.S., Giraldo, E.: Use of electrodialysis as a VFA recovery process from acidogenic of MSW synthetic leachates. Universidad de Los Andes, Facultad de Ingeniera Revista de Ingeniería 1, 97–102 (2000)Google Scholar
  95. 95.
    Agenson, K.O., Oh, J.-I., Urase, T.: Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes, controlling parameters of process. J. Memb. Sci. 225, 91–103 (2003)CrossRefGoogle Scholar
  96. 96.
    Bouchoux, A., Roux-de Balmann, H., Lutin, F.: Introduction of nanofiltration in a production process of fermented organic acids. 9th World Filtration Congress—WCF9. New Orleans (2004)Google Scholar
  97. 97.
    Bowen, W.R., Mohammad, A.W., Hilal, N.: Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy. J. Memb. Sci. 126, 91–105 (1997)CrossRefGoogle Scholar
  98. 98.
    Kosutic, K., Kunst, B.: Removal of organics from aqueous solutions by commercial RO and NF membranes of characterized porosities. Desalination 142, 47–56 (2002)CrossRefGoogle Scholar
  99. 99.
    Labbaci, A., Douani, M., Kyuchoukov, G.: Treatment of effluents issued from agro-food industries by liquid–liquid extraction of malic and lactic acids using tri-n-octylamine and tri-n-butyl phosphate. Ind. Eng. Chem. Res. 51, 12471–12478 (2012)Google Scholar
  100. 100.
    Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.U., Watanabe, Y.: Rejection of micropollutants (disinfection by products, endocrine disrupting compounds and pharmaceutically active compounds) by NF/RO. J. Memb. Sci. 227, 113–121 (2003)CrossRefGoogle Scholar
  101. 101.
    Al-Amoudi, A.S.: Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes, a review. Desalination 259, 1–10 (2010)CrossRefGoogle Scholar
  102. 102.
    Al-Amoudi, A.S., Farooque, A.M.: Performance restoration and autopsy of NF membranes used in seawater pretreatment. Desalination 178, 261–271 (2005)CrossRefGoogle Scholar
  103. 103.
    Al-Amoudi, A.S., Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Memb. Sci. 303, 4–28 (2007)CrossRefGoogle Scholar
  104. 104.
    Al-Amoudi, A.S., Williams, P., Al-Hobaib, A.S., Lovitt, R.W.: Cleaning results of new and fouled nanofiltration membrane characterized by contact angle, updated DSPM, flux and salts rejection. Appl. Surf. Sci. 254, 3983–3992 (2008)CrossRefGoogle Scholar
  105. 105.
    Al-Amoudi, A.S., Williams, P., Mandale, S., Lovitt, R.W.: Cleaning results of new and fouled nanofiltration membrane charactirized by zeta potential and permeability. Sep. Purif. Technol. 54, 234–240 (2007)CrossRefGoogle Scholar
  106. 106.
    Van der Bruggen, S.J.S., Wilms, D., Vandecasteele, C.: Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Memb. Sci. 156, 29–41 (1999)CrossRefGoogle Scholar
  107. 107.
    Freger, V., Gilron, J., Belfer, S.: TFC polyamide membranes modified by grafting of hydrophilic polymers, and FT-IR/AFM/TEM study. J. Memb. Sci. 209, 283–292 (2002)CrossRefGoogle Scholar
  108. 108.
    Nystrom, M.B., Butylina, S., Platt, S.: NF retention and critical flux of small hydrophilic/hydrophobic molecules. J. Memb. Sci. 60, 1–6 (1991)CrossRefGoogle Scholar
  109. 109.
    Jevons, K., Awe, M.: Economic benefits of membrane technology vs. evaporator. Desalination 250, 961–963 (2010)CrossRefGoogle Scholar
  110. 110.
    Nath, K.: Membrane Separation Processes. Prentice Hall of India, New Delhi (2008)Google Scholar
  111. 111.
    Van Reis, R., Zydney, A.: Bioprocess membrane technology. J. Memb. Sci. 297, 16–50 (2007)Google Scholar
  112. 112.
    Tchobanoglous, G., Burton, L.F., Stensel, D.H.: Wastewater Engineering, Treatment and Reuse. McGraw-Hill, Singapore (2004)Google Scholar
  113. 113.
    Doran, P.M.: Bioprocess Engineering Principles. Academic Press, London (1995)Google Scholar
  114. 114.
    Van der Bruggen, V., Vandecasteele, C.: Removal of pollutants from surface water and groundwater by nanofiltration, overview of possible applications in the drinking water industry. Environ. Pollut. 122, 435–445 (2003)CrossRefGoogle Scholar
  115. 115.
    Teela, A., Huber, G.W., Ford, D.M.: Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes. J. Memb. Sci. 378, 495–502 (2011)CrossRefGoogle Scholar
  116. 116.
    Bellona, C., Drewes, J.E.: The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Memb. Sci. 249, 227–234 (2005)CrossRefGoogle Scholar
  117. 117.
    Baker, R.W.: Membrane Technology and Applications. Wiley, Hoboken (2000)Google Scholar
  118. 118.
    Marcel, M.: Basic Principles of Membrane Technology. Kluwer, Dordrecht (1996)Google Scholar
  119. 119.
    Koros, W.J., Fleming, G.K.: Membrane-based gas separation. J. Memb. Sci. 83, 1–8 (1993)CrossRefGoogle Scholar
  120. 120.
    Mungray, A., Murthy, Z.P.V.: Comparative performance study of four nanofiltration in the separation of mercury and chromium. Ionics 18, 811–816 (2012)CrossRefGoogle Scholar
  121. 121.
    Coulson, J.M., Richardson, J.F.: Chemical Engineering, Chemical and Biochemical Reactors and Process Control. Pergamon Press, Oxford (1994)Google Scholar
  122. 122.
    Bowen, W.R., Welfoot, J.S.: Modelling of membrane nanofiltration-pore size distribution effects. Chem. Eng. Sci. 57, 1393–1407 (2002)CrossRefGoogle Scholar
  123. 123.
    Schaep, J., Van der Bruggen, B., Vandecasteele, C., Wilms, D.: Influence of ion size and charge in nanofiltration. Sep. Purif. Technol. 178, 185–193 (1998)Google Scholar
  124. 124.
    Ramirez, P., Mafé, S., Manzares, J.A., Pellicer, J.: Membrane potential of bipolar membranes. J. Electroanal. Chem. 404, 187–193 (1996)CrossRefGoogle Scholar
  125. 125.
    Tsuru, T., Nakao, S.-I., Kimura, S.: Ion separation by bipolar membranes in reverse osmosis. J. Memb. Sci. 108, 269–278 (1995)CrossRefGoogle Scholar
  126. 126.
    Schafer, A.I., Pihlajamaki, A., Fane, A.G., Waite, T.D., Nystrom, M.: Natural organic matter removal by nanofiltration, effects of solution chemistry on retention of low molar mass acids versus bulk organic matter. J. Memb. Sci. 242, 73–85 (2004)CrossRefGoogle Scholar
  127. 127.
    Gonzalez, M.I., Alvarez, S., Rira, F.A., Alvarez, R.: Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration. Desalination 228, 84–96 (2008)CrossRefGoogle Scholar
  128. 128.
    Hong, S.U., Ouyang, L., Bruening, M.L.: Recovery of phosphate using multilayer polyelectrolyte nanofiltration membranes. J. Memb. Sci. 327, 2–5 (2009)CrossRefGoogle Scholar
  129. 129.
    Bargeman, G., Steensma, M., ten Kate, A., Westerink, J.B., Demmer, R.L.M., Bakkenes, H., Manuhutu, C.F.H.: Nanofiltration as energy-efficient solution for sulfate waste in vacuum salt production. Desal. 246, 87–95 (2009)Google Scholar
  130. 130.
    Siddharth, S.: Green energy-anaerobic digestion. 4th WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Elounda, Greece (2006)Google Scholar
  131. 131.
    Lipnizki, J.: Optimisation of membrane processes in white biotechnology. Desalination 224, 105–110 (2008)CrossRefGoogle Scholar
  132. 132.
    Salminen, E.A., Rintala, J.A.: Anaerobic digestion of organic solid poultry slaughterhouse waste—a review. Bioresour. Technol. 83, 13–26 (2002)CrossRefGoogle Scholar
  133. 133.
    Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour. Technol. 129, 170–176 (2013)CrossRefGoogle Scholar
  134. 134.
    Amon, T., et al.: Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 98, 3204–3212 (2007)CrossRefGoogle Scholar
  135. 135.
    Bauer, A., Mayr, H., Hopfner-Sixt, K., Amon, T.: Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. J. Biotechnol. 142, 56–63 (2009)CrossRefGoogle Scholar
  136. 136.
    Kumar, S., Datta, D., Babu, B.V.: Experimental data and theoretical (che-model using the differential evolution approach and linear solvation energy relationship model) predictions on reactive extraction of monocarboxylic acids using tri-n-octylamine. J. Chem. Eng. Data 55, 4290–4300 (2010)CrossRefGoogle Scholar
  137. 137.
    Van der Bruggen, B., Braeken, L., Vandecasteele, C.: Evaluation of parameters describing flux decline in nanofiltration of aqueous solutions containing organic compounds. Desalination 147, 281–288 (2002)CrossRefGoogle Scholar
  138. 138.
    Masse, L., Masse, D.I., Pellerin, Y.: The effect of pH on the separation of manure nutrients with reverse osmosis membranes. J. Memb. Sci. 325, 914–919 (2008)CrossRefGoogle Scholar
  139. 139.
    Masse, L., Masse, D.I., Pellerin, Y., Dubreil, J.: Osmotic pressure and substrate resistance during the concentration of manure nutrients by reverse osmosis membranes. J. Memb. Sci. 348, 28–33 (2010)CrossRefGoogle Scholar
  140. 140.
    Li, S.Z., Li, X.Y., Cui, Z.F., Wang, D.Z.: Application of ultrafiltration to improve the extraction of antibiotics. Sep. Purif. Technol. 34, 115–123 (2004)CrossRefGoogle Scholar
  141. 141.
    Isa, M.H.M., Coraglia, D.E., Frazier, R.A., Jauregi, P.: Recovery and purification of surfactin from fermentation broth by a two-step ultrafiltration process. J. Memb. Sci. 296, 51–57 (2007)CrossRefGoogle Scholar
  142. 142.
    Yu, C.-H., Wu, C.-H., Lin, C.-H., Hsiao, C.-H., Lin, C.-F.: Hydrophobicity and molecular weight of humic substances on ultrafiltration fouling and resistance. Sep. Purif. Technol. 64, 206–212 (2008)CrossRefGoogle Scholar
  143. 143.
    Yeom, C.K., Lee, S.H., Lee, J.M.: Effect of the ionic characteristics of charged membranes on the permeation of anionic solutes in reverse osmosis. J. Memb. Sci. 169, 237–247 (2000)CrossRefGoogle Scholar
  144. 144.
    García-Molina, V., Lyko, S., Esplugas, S., Wintgens, T., Melin, T.: Ultrafiltration of aqueous solutions containing organic polymers. Desalination 189, 110–118 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Myrto-Panagiota Zacharof
    • 2
    • 3
    Email author
  • Robert W. Lovitt
    • 1
    • 2
    • 3
  1. 1.Multidisciplinary Nanotechnology Centre (MNC), College of EngineeringSwansea UniversitySwanseaUK
  2. 2.Centre for Complex Fluid Processing (CCFP), College of EngineeringSwansea UniversitySwanseaUK
  3. 3.Centre for Water Advanced Technologies and Environmental Research (CWATER), College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations