Advertisement

Waste and Biomass Valorization

, Volume 4, Issue 3, pp 549–556 | Cite as

Effect of Particle Size on Methane Production of Raw and Alkaline Pre-treated Ensiled Sorghum Forage

  • C. SambusitiEmail author
  • E. Ficara
  • F. Malpei
  • J. P. Steyer
  • H. Carrère
Original Paper

Abstract

In Italy, sorghum is a suitable substrate for anaerobic digestion in agricultural biogas plants. However, its complex structure justifies the use of a pre-treatment to improve its anaerobic biodegradability. Thus, the aim of this study was to investigate the impact of particle size on structural changes and methane production from ensiled sorghum forage, with and without the addition of sodium hydroxide (NaOH). Sorghum samples were ground into particles with mean diameters of 2, 1, 0.5 and 0.25 mm. Then, samples milled into 1 and 0.25 mm particle sizes were soaked in a NaOH solution at 10 gNaOH/100gTS dosage and maintained at 55 °C for 12 h. The study revealed that no significant differences in terms of chemical composition were observed between 2 and 0.25 mm particle sizes. Moreover, after the addition of NaOH a similar reduction of lignin (around 30 %), cellulose (around 30–40 %), and hemicelluloses (around 40–45 %), on the solid fraction separated after the pretreatment, was observed for both particle sizes (1 and 0.25 mm). Similar results were confirmed by the Infrared spectroscopy technique which revealed that the crystallinity of cellulose seemed to be not significantly affected by the particle size reduction with and without the addition of NaOH. Finally, milling did not improve the methane production (\( 2 7 5. 3 \pm 3. 5 {\text{ mL}}_{{{\text{CH}}_{4} }} /{\text{gVS}} \)) and the kinetic constants (0.11 ± 0.01 d−1) between 2 and 0.25 mm. On the contrary, by adding the NaOH solution, an increase in both methane yield (by \( 3 2 4. 5 \pm 0. 7 {\text{ mL}}_{{{\text{CH}}_{ 4} }} /{\text{gVS}} \)) and kinetic constants (by 0.16 ± 0.00 d−1) was observed, but these results were not significantly influenced by the particle size.

Keywords

Ensiled sorghum forage Infrared (FTIR) spectra Methane Particle size Sodium hydroxide 

Notes

Acknowledgments

This research work has been conceived and supported in the context of Fabbrica della Bioenergia which is gratefully acknowledged.

References

  1. 1.
    Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.P., Carrère, H.: Lignocellulosic materials into Biohydrogen and Biomethane: impact of structural features and pretreatment. Crit. Rev. Env. Sci. Tec. doi: 10.1080/10643389.2011.604258
  2. 2.
    Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)CrossRefGoogle Scholar
  3. 3.
    Silva, G.G.D., Guilbert, S., Rouau, X.: Successive centrifugal grinding and sieving of wheat straw. Powder Technol. 208(2), 266–270 (2010)CrossRefGoogle Scholar
  4. 4.
    Kouichi, I., Okishio, Y.K., Nagao, N., Niwa, C., Yamamoto, S., Toda, T.: Effects of particle size on anaerobic digestion of food waste. Int. Biodeterior. Biodegradation 64, 601–608 (2010)CrossRefGoogle Scholar
  5. 5.
    Mshandete, A., Björnsson, L., Kivaisi, A.K., Rubindamayugi, M.S.T., Mattiasson, B.: Effect of particle size on biogas yield from sisal fibre waste. Renew. Energy 31(14), 2385–2392 (2006)CrossRefGoogle Scholar
  6. 6.
    Hills, D.J., Nakano, K.: Effects of pqrticle size on anaerobic digestion of tomato solid wastes. Agric. Wastes 10(4), 285–295 (1984)CrossRefGoogle Scholar
  7. 7.
    Dumas, C., Ghizzi Damasceno da Silva, G., Rouau, X., Carrère, H. and Steyer, J.P.: Wheat straw milling effect on biogas production. In: Proceeding of 12th World Congress on Anaerobic Digestion, Guadalajara, Jalisco-Mexico, 31 October–4 November 2010Google Scholar
  8. 8.
    Ficara, E., Malpei, F.: Maize mono-digestion efficiency: results from laboratory tests. Water Sci. Technol. 64(10), 2029–2037 (2011)CrossRefGoogle Scholar
  9. 9.
    Menardo, S., Airoldi, G., Balsari, P.: The effect of particle size and thermal pre-treatment on the methane yield of four agricultural by-products. Bioresour. Technol. 104, 708–714 (2012)CrossRefGoogle Scholar
  10. 10.
    Xie, S., Frost, J.P., Lawlor, P.G., Wu, G., Zhan, X.: Effects of thermo-chemical pre-treatment of grass silage on methane production by anaerobic digestion. Bioresour. Technol. 102(19), 8748–8755 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhu, J., Wan, C., Li, Y.: Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour. Technol. 101, 7523–7528 (2010)CrossRefGoogle Scholar
  12. 12.
    Monlau, F., Barakat, A., Steyer, J.P., Carrère, H.: Comparison of seven types of thermo-chemical pretreatment on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 120, 241–247 (2012)CrossRefGoogle Scholar
  13. 13.
    Sambusiti, C., Ficara, E., Rollini, M., Manzoni, M., Malpei, F.: Sodium hydroxide pretreatment of ensiled sorghum forage and wheat straw to increase methane production. Wat. Sci. Tech. (2012). doi: 10.2166/wst.2012.480 Google Scholar
  14. 14.
    APHA: American Public Health Association. Standard methods for the examination of water and wastewater, 20th edn. (1998)Google Scholar
  15. 15.
    Effland, M.J.: Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi 60(10), 143–144 (1977)Google Scholar
  16. 16.
    Petersson, A., Thomsen, M.H., Hauggaard-Nielsen, H., Thomsen, A.B.: Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean. Biomass Bioenergy 31(11–12), 812–819 (2007)CrossRefGoogle Scholar
  17. 17.
    OECD 311. Anaerobic biodegradability of organic compounds in digested sludge by measurement of gas production, (2006). doi: 10.1787/9789264016842-en
  18. 18.
    UNI EN ISO 11734:2004—Water quality—Evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge—method by measurement of the biogas productionGoogle Scholar
  19. 19.
    Angelidaki, I., Sanders, W.: Assessment on the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3, 117–129 (2004)CrossRefGoogle Scholar
  20. 20.
    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Wat. Sci. Tech. 59, 927–934 (2009)CrossRefGoogle Scholar
  21. 21.
    Hashimoto, A.G.: Pretreatment of wheat straw for fermentation to methane. Biotechnol. Bioeng. 28, 1857–1866 (1986)CrossRefGoogle Scholar
  22. 22.
    Corredor, D.Y., Salazar J.M., Hohn, K.L., Bean, S., Bean, B., Wang, D.: Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Appl. Biochem. Biotechnol. 158, 164–179 (2009)Google Scholar
  23. 23.
    Spiridon, I., Teaca, C.A., Bodirlau, R.: Structural changes evidenced by ftir spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis. Bioresources 6(1), 400–413 (2010)Google Scholar
  24. 24.
    Shea, D., Xub, F., Genga, Z.C., Sunb, R.C., Jonesd, G.L., Bairde, M.S.: Physicochemical characterization of extracted lignin from sweet sorghum stem. Ind. Crop. Prod. 32, 21–28 (2010)CrossRefGoogle Scholar
  25. 25.
    Sills, D.L., Gossett, J.M.: Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses. Biotechnol. Bioeng. 109(4), 894–903 (2012)CrossRefGoogle Scholar
  26. 26.
    Goshadroua, A., Karimia, K., Taherzadeh, M.J.: Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Ind. Crop. Prod. 34, 1219–1225 (2011)CrossRefGoogle Scholar
  27. 27.
    Choudhary, R., Umagiliyage, A.L., Liang, Y., Siddaramu, T., Haddock, J., Markevicius, G.: Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass Bioenergy 39, 218–226 (2012)CrossRefGoogle Scholar
  28. 28.
    Akerholm, M., Hinterstoisser, B., Salmen, L.: Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohyd. Res. 339(3), 569–578 (2004)CrossRefGoogle Scholar
  29. 29.
    Li, C.L., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., Singh, S.: Comparison of dilute acid and ionic liquid pre-treatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101(13), 4900–4906 (2009)CrossRefGoogle Scholar
  30. 30.
    Driemeier, C., Calligaris, G.A.: Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J. Appl. Cryst. 44, 184–192 (2011)CrossRefGoogle Scholar
  31. 31.
    Carlos Driemeier, C., Pimenta, M.T.B., Rocha, G.J.M., Oliveira, M.M., Mello, D.B., Maziero, P., Goncalves, A.R.: Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18, 1509–1519 (2011)CrossRefGoogle Scholar
  32. 32.
    Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., Steyer, J.P., Carrere, H.: Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ. Sci. Technol. 46, 12217–12225 (2012)CrossRefGoogle Scholar
  33. 33.
    Marson, G.A., El Seoud, O.A.: Cellulose dissolution in lithium chloride/N, Ndimethylacetamide solvent system: relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. J. Polym. Sci. Polym. Chem. 37, 3738–3744 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. Sambusiti
    • 1
    • 2
    Email author
  • E. Ficara
    • 1
  • F. Malpei
    • 1
  • J. P. Steyer
    • 2
  • H. Carrère
    • 2
  1. 1.DICA, Environmental SectionPolitecnico di MilanoMilanItaly
  2. 2.INRA, UR050Laboratoire de Biotechnologie de l’EnvironnementNarbonneFrance

Personalised recommendations