Waste and Biomass Valorization

, Volume 4, Issue 3, pp 529–537 | Cite as

Utilisation of By-Products from Sunflower-Based Biodiesel Production Processes for the Production of Fermentation Feedstock

  • Vasiliki Kachrimanidou
  • Nikolaos Kopsahelis
  • Afroditi Chatzifragkou
  • Seraphim Papanikolaou
  • Stavrianos Yanniotis
  • Ioannis Kookos
  • Apostolis A. Koutinas
Original Paper


By-products streams from a sunflower-based biodiesel plant were utilised for the production of fermentation media that can be used for the production of polyhydroxyalkanoates (PHA). Sunflower meal was utilised as substrate for the production of crude enzyme consortia through solid state fermentation (SSF) with the fungal strain Aspergillus oryzae. Fermented solids were subsequently mixed with unprocessed sunflower meal aiming at the production of a nutrient-rich fermentation feedstock. The highest free amino nitrogen (FAN) and inorganic phosphorus concentrations achieved were 1.5 g L−1 and 246 mg L−1, respectively, when an initial proteolytic activity of 6.4 U mL−1 was used. The FAN concentration was increased to 2.3 g L−1 when the initial proteolytic activity was increased to 16 U mL−1. Sunflower meal hydrolysates were mixed with crude glycerol to provide fermentation media that were evaluated for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) using Cupriavidus necator DSM 545. The P(3HB-co-3HV) (9.9 g l−1) produced contained 3HB and 3HV units with 97 and 3 mol %, respectively. Integrating PHA production in existing 1st generation biodiesel production plants through valorisation of by-product streams could improve their sustainability.


Sunflower meal Crude glycerol Enzymatic bioconversion Aspergillus oryzae Solid state fermentation Polyhydroxyalkanoates 



This work is part of the “BIOREF” project (09SYN-81-715), implemented within the National Strategic Reference Framework (NSRF) 2007–2013 and co-financed by National (Greek Ministry—General Secretariat of Research and Technology) and Community Funds (E.U.-European Social Fund).


  1. 1.
    Lamers, P.: International biodiesel markets. Developments in production and trade. Published (2012)
  2. 2.
    Krawczyk, T.: Biodiesel—alternative fuel makes inroads but hurdles remain. INFORM 7, 801–829 (1996)Google Scholar
  3. 3.
    Ma, F., Hanna, M.A.: Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999)CrossRefGoogle Scholar
  4. 4.
    Dorado, M.P., Ballesteros, E., Arnal, J.M., Gómez, J., López-Giménez, F.J.: Testing waste olive oil methyl ester as a fuel in a diesel engine. Energ. Fuel 17(6), 1560–1565 (2003)CrossRefGoogle Scholar
  5. 5.
    Panoutsou, C., Namatov, I., Lychnaras, V., Nikolaou, A.: Biodiesel options in Greece. Biomass Bioenerg. 32, 473–481 (2008)CrossRefGoogle Scholar
  6. 6.
    United States Department of Agriculture. Foreign Agricultural Service. Production, Supply and Distribution Online. Accessed 21 Sep 2012.
  7. 7.
    Papanikolaou, S., Muniglia, L., Aggelis, G., Marc, I.: Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92(4), 737–744 (2002)CrossRefGoogle Scholar
  8. 8.
    Da Silva, G.P., Mack, M., Contiero, J.: Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27, 30–39 (2009)CrossRefGoogle Scholar
  9. 9.
    Chatzifragkou, A., Papanikolaou, S., Dietz, D., Doulgeraki, A.I., Nychas, G.J., Zeng, A.P.: Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilised fermentation process. Appl. Microbiol. Biotechnol. 91(1), 101–112 (2011)CrossRefGoogle Scholar
  10. 10.
    Lee, P.C., Lee, W.G., Chang, H.N.: Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioenerg. 72(1), 41–48 (2001)CrossRefGoogle Scholar
  11. 11.
    Ito, T., Nakashimada, Y., Senba, K., Matsui, T., Nishio, N.: Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100(3), 260–265 (2005)CrossRefGoogle Scholar
  12. 12.
    Ashby, R.D., Solaiman, D.K.Y., Foglia, T.A.: Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 12(3), 105–112 (2004)CrossRefGoogle Scholar
  13. 13.
    Solaiman, D.K.Y., Ashby, R.D., Foglia, T.A., Marmer, W.N.: Conversion of agricultural feedstock and co-products into poly(hydroxyalkanoates). Appl. Microbiol. Biotechnol. 71, 783–789 (2006)CrossRefGoogle Scholar
  14. 14.
    National Sunflower Association. Meal/Wholeseed feeding. Accessed 19 Sep 2012.
  15. 15.
    Lomascolo, A., Uzan-Boukhris, E., Sigoillot, J.C., Fine, F.: Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. (2012). doi: 10.1007/s00253-012-4250-6 Google Scholar
  16. 16.
    Sircar, A., Sridhar, P., Das, P.K.: Optimization of solid state medium for the production of clavulanic acid by Streptomyces clavuligerus. Process Biochem. 33(3), 283–289 (1998)CrossRefGoogle Scholar
  17. 17.
    Sarada, I., Sridhar, P.: Nutritional improvement for cephamycin C fermentation using a superior strain of Streptomyces clavuligerus. Process Biochem. 33(3), 317–322 (1998)CrossRefGoogle Scholar
  18. 18.
    Jacobs, A., Botha, A., Reddy, J.K., Van Zyl, W.H.: Sunflower press cake as a substrate for eicosipentaenoic acid production by representatives of the genus Mortierella. Bioresources 5(2), 1232–1243 (2010)Google Scholar
  19. 19.
    Jadhav, M., Kagalkar, A., Jadhav, S., Govindwar, S.: Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur. J. Lipid Sci. Tech. 113(11), 1347–1356 (2011)CrossRefGoogle Scholar
  20. 20.
    Rajoka, M.I., Huma, T., Khalid, A.M., Latif, F.: Kinetics of enhanced substrate consumption and endo-β-xylanase production by a mutant derivative of Humicola lanuginose in solid-state-fermentation. World J. Microb. Biot. 21(6–7), 869–876 (2005)CrossRefGoogle Scholar
  21. 21.
    Ashby, R., Solaiman, D.K.Y., Strahan, G.D.: Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers. J. Am. Oil Chem. Soc. 88(7), 949–959 (2011)CrossRefGoogle Scholar
  22. 22.
    Cavalheiro, J.M.B.T., de Almeida, M.C.M.D., Grandfils, C., da Fonseca, M.M.R.: Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Proc. Biochem. 44(5), 509–515 (2009)CrossRefGoogle Scholar
  23. 23.
    Cavalheiro, J.M.B.T., Raposo, R.S., de Almeida, M.C.M.D., Cesário, M.T., Sevrin, C., Grandfils, C., da Fonseca, M.M.R.: Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour. Technol. 111, 391–397 (2012)CrossRefGoogle Scholar
  24. 24.
    Mothes, G., Schnorpfeil, C., Ackermann, J.-U.: Production of PHB from crude glycerol. Eng. Life Sci. 7, 475–479 (2007)CrossRefGoogle Scholar
  25. 25.
    Wang, R., Law, R.C.S., Webb, C.: Protease production and conidiation by Aspergillus oryzae in flour fermentation. Proc. Biochem. 40, 217–227 (2005)CrossRefGoogle Scholar
  26. 26.
    American Association of Cereal Chemists Inc (AACC): Approved Methods of the American Association of Cereal Chemists. 8th ed., St. Paul, MN, USA (1983)Google Scholar
  27. 27.
    Riis, V., Mai, W.: Gas chromatographic determination of poly-b-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. J. Chromatogr. A445, 285–289 (1988)Google Scholar
  28. 28.
    Lie, S.: The EBC-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79, 37–41 (1973)CrossRefGoogle Scholar
  29. 29.
    Harland, B.F., Harland, J.: Fermentative reduction of phytate in rye, white and whole wheat breads. Cereal Chem. 57, 226–229 (1980)Google Scholar
  30. 30.
    Parrado, J., Millan, F., Hernandez-Pinzh, I., Bautista, J., Machado, A.: Characterization of enzymatic sunflower protein hydrolysates. J. Agric. Food Chem. 41, 1821–1825 (1993)CrossRefGoogle Scholar
  31. 31.
    Bautista, J., Parrado, J., Machado, A.: Composition and fractionation of sunflower meal: use of the lignocellulosic fraction as substrate in solid state fermentation. Biol. Waste 32(3), 225–233 (1990)CrossRefGoogle Scholar
  32. 32.
    Salunkhe, D.K., Chavan, J.K., Adsule, R.N., Kadam, S.S.: Sunflower. In: Salunkhe, D.K., Adsule, R.N., Chavan, J.K., Kadam, S.S. (eds.) World Oilseeds: Chemistry, Technology and Utilization, pp. 97–139. Van Nostrand Reinhold, New York (1992)Google Scholar
  33. 33.
    Gassmann, B.: Preparation and application of vegetable proteins, especially proteins from sunflower seed, for human consumption. App. Die Nahrung 27, 351–369 (1983)CrossRefGoogle Scholar
  34. 34.
    Bhatty, R.S., Sosulski, F.W., Wu, K.K.: Protein and nonprotein nitrogen contents of some oilseeds and peas. Can. J. Plant Sci. 53, 651–657 (1973)CrossRefGoogle Scholar
  35. 35.
    Villanueva, A., Vioque, J., Sánchez-Vioque, R., Clemente, A., Bautista, J., Millán, F.: Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases. Grasas Aceites 50(6), 472–476 (1999)CrossRefGoogle Scholar
  36. 36.
    Kiran, E.U., Salakkam, A., Trzcinski, A.P., Bakir, U., Webb, C.: Enhancing the value of nitrogen from rapeseed meal for microbial oil production. Enz. Microb. Technol. 50, 337–342 (2012)CrossRefGoogle Scholar
  37. 37.
    Wang, R., Shaarani, S., Md Godoy, L.C., Melikoglu, M., Vergara, C.S., Koutinas, A., Webb, C.: Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enz. Microb. Technol. 47, 77–83 (2010)CrossRefGoogle Scholar
  38. 38.
    Whitaker, J.R.: Enzyme-catalyzed reactions experimental factors that affect rates. In: Whitaker, J.R., Voragen, A.G.J., Wong, D.W.S. (eds.) Handbook of Food Enzymology, pp. 43–48. Marcel Dekker Inc., New York (2000)Google Scholar
  39. 39.
    Wang, R., Godoy, L.C., Shaarani, S., Melikoglu, M., Koutinas, A., Webb, C.: Improving wheat flour hydrolysis by an enzyme mixture from solid state fungal fermentation. Enz. Microb. Technol. 44, 223–228 (2009)CrossRefGoogle Scholar
  40. 40.
    Koutinas, A., Wang, R.H., Webb, C.: Development of a process for the production of nutrient supplements for fermentations based on fungal autolysis. Enz. Microb. Technol. 36, 629–638 (2005)CrossRefGoogle Scholar
  41. 41.
    Koutinas, A.A., Xu, Y., Wang, R., Webb, C.: Polyhydroxybutyrate production from a novel feedstock derived from a wheat-based biorefinery. Enz. Microb. Technol. 40, 1035–1044 (2007)CrossRefGoogle Scholar
  42. 42.
    Xu, Y., Wang, R.H., Koutinas, A., Webb, C.: Microbial biodegradable plastic production from a wheat-based biorefining strategy. Proc. Biochem. 45, 153–163 (2010)CrossRefGoogle Scholar
  43. 43.
    Steinbüchel, A., Lütke-Eversloh, T.: Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanaotes in microorganisms. Biochem. Eng. J. 16, 81–96 (2003)CrossRefGoogle Scholar
  44. 44.
    Geneau-Sbartai, C., Leyris, J., Silvestre, F., Rigal, L.: Sunflower cake as a natural composite: composition and plastic properties. J. Agric. Food Chem. 56, 11198–11208 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Vasiliki Kachrimanidou
    • 1
  • Nikolaos Kopsahelis
    • 1
  • Afroditi Chatzifragkou
    • 1
  • Seraphim Papanikolaou
    • 1
  • Stavrianos Yanniotis
    • 1
  • Ioannis Kookos
    • 2
  • Apostolis A. Koutinas
    • 1
  1. 1.Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  2. 2.Department of Chemical EngineeringUniversity of PatrasRio PatrasGreece

Personalised recommendations