Advertisement

Waste and Biomass Valorization

, Volume 4, Issue 2, pp 377–383 | Cite as

What Scientific Issues in Life Cycle Assessment Applied to Waste and Biomass Valorization? Editorial

  • V. Bellon-MaurelEmail author
  • L. Aissani
  • C. Bessou
  • L. Lardon
  • E. Loiseau
  • E. Risch
  • P. Roux
  • G. Junqua
Original Paper

Abstract

Whereas life cycle assessment (LCA) is more and more used for assessing the environmental load of waste management systems and of biomass production and valorization systems, various scientific issues are still to be dealt with. The purpose of this paper is to enlighten these scientific issues and to describe the current attempt to overcome them. The method used has been to go through the steps of the LCA standardized framework (ISO 14040) and to outline at each step the points that could be improved and still deserve research efforts. The various identified issues are: in step 1 (goal and scope), the choice of attributional/consequential modelling, the difficult choice of the functional unit due to the highly multi-functional nature of such systems, the allocation choices and the need for spatial differentiation; in step 2 (inventory), the thorny issue of modelling such complex systems and properly estimating field emissions; in step 3 (impact assessment), the lack of appropriate impacts (such as odours) in current LCA impact categories; in step 4 (interpretation and use), research efforts are needed to understand and facilitate the way actors take over and use LCA multi-criteria results. A transversal issue, i.e. uncertainty characterization and reduction, is also analyzed. These various scientific bottlenecks are currently under study; some are handled by this “Waste and Biomass Valorization” special topic, which includes a selection of papers presented in 2011 at the Ecotech&Tools conference (Montpellier, France).

Keywords

Lifecycle assessment LCA Waste Allocation Spatialization Decision Complex system 

Notes

Acknowledgments

The authors thank the other members of ELSA pole for their advice and suggestions. We are also grateful to the Languedoc Roussillon for its financial support and to Interreg Sudoe (Ecotech-Suode project) for its funding in LCA research.

References

  1. 1.
    EC: Guidance on the interpretation of key provisions of Directive 2008/98/EC on waste. European Commission, DG Environment, p. 74 (2012)Google Scholar
  2. 2.
    Manfredi, S., Pant, R.: Supporting environmentally sound decisions for waste management: a technical guide to life cycle thinking (LCT) and life cycle assessment (LCA) for waste experts and LCA practitioners. In: EUR 24916 EN—2011, p. 197. European Commission—JRC-IES (Institute for Environmental Sustainability), Ispra, IT (2011)Google Scholar
  3. 3.
    Kirkeby, J.T., Birgisdottir, H., Bhander, G.S., Hauschild, M., Christensen, T.H.: Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE. Waste Manage. 27(7), 961–970 (2007)CrossRefGoogle Scholar
  4. 4.
    Bellon-Maurel, V., Bessou, C., Junqua, G., Lardon, L., Loiseau, E., Macombe, L., Risch, E., Roux, P.: Applying life cycle assessment to complex biosystems: which fronts of science? Annales des Mines - Responsabilité et Environnement Avril 66, 35–41 (2012)Google Scholar
  5. 5.
    Reap, J., Roman, F., Duncan, S., Bras, B.: A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. Int. J. Life Cycle Assess. 13(4), 290–300 (2008)CrossRefGoogle Scholar
  6. 6.
    Reap, J., Roman, F., Duncan, S., Bras, B.: A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int. J. Life Cycle Assess. 13(5), 374–388 (2008)CrossRefGoogle Scholar
  7. 7.
    Guinée, J.B., Heijungs, R., Huppes, G., Zamagni, A., Masoni, P., Buonamici, R., Ekvall, T., Rydberg, T.: Life cycle assessment: past, present, and future. Environ. Sci. Technol. 45(1), 90–96 (2011)CrossRefGoogle Scholar
  8. 8.
    Ekvall, T., Weidema, B.: System boundaries and input data in consequential life cycle inventory analysis. Int. J. Life Cycle Assess. 9(3), 161–171 (2004). doi: 10.1007/bf02994190 CrossRefGoogle Scholar
  9. 9.
    Ekvall, T., Tillman, A.-M., Molander, S.: Normative ethics and methodology for life cycle assessment. J Clean. Prod. 13(13–14), 1225–1234 (2005)CrossRefGoogle Scholar
  10. 10.
    Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.P., Suh, S., Weidema, B.P., Pennington, D.W.: Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 30(5), 701–720 (2004)CrossRefGoogle Scholar
  11. 11.
    Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., Suh, S.: Recent developments in life cycle assessment. J. Environ. Manage. 91(1), 1–21 (2009)CrossRefGoogle Scholar
  12. 12.
    Tillman, A.M.: Significance of decision-making for LCA methodology. Environ. Impact Assess. Rev. 20, 113–123 (2000)CrossRefGoogle Scholar
  13. 13.
    Heijungs, R., Guinée, J.B.: Allocation and ‘what-if’ scenarios in life cycle assessment of waste management systems. Waste Manage. 27(8), 997–1005 (2007)CrossRefGoogle Scholar
  14. 14.
    Diaz, R., Warith, M.: Life-cycle assessment of municipal solid wastes: development of the WASTED model. Waste Manage. 26(8), 886–901 (2006)CrossRefGoogle Scholar
  15. 15.
    Ekvall, T., Assefa, G., Björklund, A., Eriksson, O., Finnveden, G.: What life-cycle assessment does and does not do in assessments of waste management. Waste Manage. 27(8), 989–996 (2007)CrossRefGoogle Scholar
  16. 16.
    Potting, J., Hauschild, M.: Part II: spatial differentiation in life-cycle assessment via the site-dependent characterisation of environmental impact from emissions. Int. J. Life Cycle Assess. 2(4), 209–216 (1997). doi: 10.1007/bf02978417 CrossRefGoogle Scholar
  17. 17.
    Chiueh, P.-T., Lo, S.-L., Chang, C.-L.: A GIS-based system for allocating municipal solid waste incinerator compensatory fund. Waste Manage. 28(12), 2690–2701 (2008)CrossRefGoogle Scholar
  18. 18.
    Suh, S., Nakamura, S.: Five years in the area of input-output and hybrid LCA. Int. J. Life Cycle Assess. 12(6), 351–352 (2007)Google Scholar
  19. 19.
    Suh, S., Lenzen, M., Treloar, G.J., Hondo, H., Horvath, A., Huppes, G., Jolliet, O., Klann, U., Krewitt, W., Moriguchi, Y., Munksgaard, J., Norris, G.: System boundary selection in life-cycle inventories using hybrid approaches. Environ. Sci. Technol. 38(3), 657–664 (2004)CrossRefGoogle Scholar
  20. 20.
    Heinonen, J., Kyrö, R., Junnila, S.: Dense downtown living more carbon intense due to higher consumption: a case study of Helsinki. Environ. Res. Lett. 6(3), 9 (2011)Google Scholar
  21. 21.
    Ekvall, T., Assefa, G., Björklund, A., Eriksson, O., Finnveden, G.: What life-cycle assessment does and does not do in assessments of waste management. Waste Manage. (Oxf.) 27(8), 989–996 (2007)CrossRefGoogle Scholar
  22. 22.
    Collet, P., Hélias, A., Lardon, L., Steyer, J.P.: Time and life-cycle assessment: how to take time into account in the inventory step? In: Finkbeiner, M. (ed.) Towards Life Cycle Sustainibility Management, pp. 119–130. Springer, Berlin (2011)CrossRefGoogle Scholar
  23. 23.
    Cerceau, J., Junqua, G., Gonzalez, C., Lopez-Ferber, M., Mat, N.: Industrial ecology and the building of territorial knowledge: DEPART, a French Research Action Program Implemented in Harbor Territories, 13–15 January 2012, oral communication. Paper presented at the Asia Pacific Business Innovation & Technology Management International Conference, Pattaya, ThailandGoogle Scholar
  24. 24.
    Junqua, G., Moine, H.: Utilisation de l’écologie industrielle et de l’intelligence économique territoriale pour le développement durable d’une Zone Industrialo-Portuaire. Déchets Sciences et Techniques 46, 19–23 (2007)Google Scholar
  25. 25.
    IPCC: Guidelines for national greenhouse gas inventories. In: Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (eds.) National Greenhouse Gas Inventories Programme. IGES, Japan (2006)Google Scholar
  26. 26.
    Langevin, B., Lardon, L., Basset-Mens, C.: The use of models to account for the variability to agricultural data. In: Towards Life Cycle Sustainability Management. Berlin, GE, pp. 301–308 (2011)Google Scholar
  27. 27.
    Bellon-Maurel, V., Clermidy, S., Sinfort, C., Ojeda, H., Roux, P.: Life cycle assessment: an exhaustive method for assessing environmental impacts of crop management practices in agriculture. Progrès agricole et viticole. 129(20), 474–481 (2012)Google Scholar
  28. 28.
    Núñez, M., Civit, B., Muñoz, P., Arena, A.P., Rieradevall, J., Antón, A.: Assessing potential desertification environmental impact in life cycle assessment: part 1: methodological aspects. Int. J. Life Cycle Assess. 15(1), 67–78 (2010)CrossRefGoogle Scholar
  29. 29.
    Pfister, S., Koehler, A., Hellweg, S.: Assessing the environmental impacts of freshwater consumption in LCA. Environ. Sci. Technol. 43(11), 4098–4104 (2009)CrossRefGoogle Scholar
  30. 30.
    Potting, J., Hauschild, M.Z.: Spatial differentiation in life cycle impact assessment: a decade of method development to increase the environmental realism of LCIA. Int. J. Life Cycle Assess. 11, 11–13 (2006)CrossRefGoogle Scholar
  31. 31.
    Rosenbaum, R.K., Bachmann, T.M., Gold, L.S., Huijbregts, M.A.J., Jolliet, O., Juraske, R., Koehler, A., Larsen, H.F., MacLeod, M., Margni, M., McKone, T.E., Payet, J., Schuhmacher, M., Van De Meent, D., Hauschild, M.Z.: USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13(7), 532–546 (2008)CrossRefGoogle Scholar
  32. 32.
    McDougall, F.R., White, P.R., Franke, M., Hindle, P., 9780632058891, Hardback, F., P.d.M.: Integrated Waste Management, 2nd revised edition ed. Wiley, Oxford (2001)Google Scholar
  33. 33.
    Björklund, A.: Life cycle assessment as an analytical tool in strategic environmental assessment. Lessons learned from a case study on municipal energy planning in Sweden. Environ. Impact Assess. Rev. 32(1), 82–87 (2011)CrossRefGoogle Scholar
  34. 34.
    Tillman, A.M.: Significance of decision-making for LCA methodology. Environ. Impact Assess. Rev. 20(1), 113–123 (2000)CrossRefGoogle Scholar
  35. 35.
    Gentil, E.C., Damgaard, A., Hauschild, M., Finnveden, G., Eriksson, O., Thorneloe, S., Kaplan, P.O., Barlaz, M., Muller, O., Matsui, Y., Ii, R., Christensen, T.H.: Models for waste life cycle assessment: review of technical assumptions. Waste Manage. (Oxf.) 30(12), 2636–2648 (2010)CrossRefGoogle Scholar
  36. 36.
    Tan, R.R., Culaba, A.B., Purvis, M.R.I.: Application of possibility theory in the life-cycle inventory assessment of biofuels. Int. J. Energy Res. 26(8), 737–745 (2002)CrossRefGoogle Scholar
  37. 37.
    Von Bahr, B., Steen, B.: Reducing epistemological uncertainty in life cycle inventory. J. Clean. Prod. 12(4), 369–388 (2004)CrossRefGoogle Scholar
  38. 38.
    Halog, A.B., Bichraoui, N.: An integrated assessment framework for developing a sustainable forest-based eco-industrial network. Waste Biomass Valoriz. (in press) (2013)Google Scholar
  39. 39.
    Pradel, M., Pacaud, T., Cariolle, M.: Valorization of organic wastes through agricultural fertilization: coupling models to assess the effects of spreader performances on nitrogenous emissions and related environmental impacts. Waste Biomass Valoriz. (2012)Google Scholar
  40. 40.
    Dufossé, K., Gabrielle, B., Drouet, J.L., Bessou, C.: Using agroecosystem modeling to improve the estimates of N2O emissions in the lifecycle assessment of biofuels. Waste and Biomass Valoriz. (in press) (2013)Google Scholar
  41. 41.
    Marchand, M., Aissani, L., Mallard, P., Béline, F., Réveret, J.P.: Odour and life cycle assessment (LCA) in waste management: a local assessment proposal. Waste Biomass Valoriz. (2012)Google Scholar
  42. 42.
    Schlierf, K., Aissani, L., Mery, J.: The incorporation of results of non-aggregated life cycle assessment in decision making: evidence from a case study in local waste management in France. Waste Biomass Valoriz. (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • V. Bellon-Maurel
    • 1
    Email author
  • L. Aissani
    • 2
    • 3
  • C. Bessou
    • 4
  • L. Lardon
    • 5
  • E. Loiseau
    • 1
    • 6
  • E. Risch
    • 1
  • P. Roux
    • 1
  • G. Junqua
    • 7
  1. 1.IRSTEA, ELSA PoleMontpellier Cedex 5France
  2. 2.IRSTEA, UR GERERennes CedexFrance
  3. 3.Université Européenne de BretagneRennesFrance
  4. 4.CIRAD, UR-34 “Performance of Perennial Cropping Systems”Montpellier Cedex 5France
  5. 5.INRA-LBENarbonneFrance
  6. 6.AgroParisTech ENGREFParis Cedex 15France
  7. 7.EMA, LGEIAlès CédexFrance

Personalised recommendations