Skip to main content
Log in

Reactivity and Valorization of Products Issued from Carbonation of Saline Waste Solution

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The valorization of precipitated carbonates is envisaged for industrial gases treatment in order to avoid waste disposal in landfills. In this paper, the valorization focuses on the desulfurization of fumes by carbonate materials through the semi-wet way. Three carbonated materials are tested: two industrial residues and a limestone of reference. Their composition and size distribution are comparable. Infrared spectroscopy and electron microscopy are used to identify the evolution of mineral and surface composition. Multi-scale study highlights different behaviors between carbonate samples. Laboratory dissolution tests reveal that two industrial residues were clearly more soluble and have a final dissolution degree ≥90 %. The same carbonate materials were then tested at pilot scale. The unit can treat around 1,000–2,000 m3/h of industrial fumes enriched in SO2 in semi-wet desulfurization process. Injection of H2O was tested at constant temperature and Ca/S ratios to optimize the process. Origin of CaCO3 particles and hydration properties appear as the main factors controlling desulfurization efficiency. Calcium carbonates precipitated in brines show higher efficiency in SO2 conversion rate (40–70 %) in comparison with other carbonate materials in semi-wet way, i.e. limestone or leached wastes (25–35 %). The combination of high dissolution rate of CaCO3 particles with surface hydration appears as responsible for this performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mignardi, S., De Vito, C., Ferrini, V., Martin, R.F.: The efficiency of CO2 sequestration via carbonate mineralization with simulated wastewaters of high salinity. J. Hazard. Mater. 191, 49–55 (2011)

    Article  Google Scholar 

  2. Soong, Y., Fauth, D.L., Howard, B.H., Jones, J.R., Harrison, D.K., Goodman, A.L., Gray, M.L., Frommell, E.A.: CO2 sequestration with brine solution and fly ashes. Energy Convers. Manag. 47, 1676–1685 (2006)

    Article  Google Scholar 

  3. El-Naas, M.-H., Al-Marzouqi, A.H., Chaalal, O.: A combined approach for the management of desalination reject brine and capture of CO2. Desalination 251, 70–74 (2010)

    Article  Google Scholar 

  4. Karatepe, N.: A comparison of flue gas desulphurization processes. Energy Sour. 22, 197–206 (2000)

    Article  Google Scholar 

  5. Bodénan, F., Deniard, Ph.: Characterization of flue gas cleaning residues from European solid waste incinerators: assessment of various Ca-based sorbent processes. Chemosphere 51, 335–347 (2003)

    Article  Google Scholar 

  6. Davini, P.: Properties and reactivity of reactivated calcium-based solvent. Fuel 81, 763–770 (2002)

    Article  Google Scholar 

  7. Lee, K.T., Mohamed, A.R., Bhatai, S., Chu, K.H.: Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents. Chem. Eng. J. 114, 171–177 (2005)

    Article  Google Scholar 

  8. Adnadjevic, B., Popovic, A.: Influence of crystal form and morphological characteristics of CaCO3 particles on kinetic of combustion gases desulfurization. Fuel Process. Technol. 89, 773–776 (2008)

    Article  Google Scholar 

  9. Anderson, D.C., Anderson, P., Galwey, A.K.: Surface textural changes during reaction of CaCO3 crystals with SO2 and O2 (air) 1. Small crystals, 670–1070 K. Fuel 74, 1018–1023 (1995)

    Article  Google Scholar 

  10. Li, Y.R., Qi, H.Y., You, C.F., Xu, X.C.: Kinetic model of CaO/fly ash sorbent for flue gas desulphurization at moderate temperatures. Fuel 86, 785–792 (2007)

    Article  Google Scholar 

  11. Hu, G., Dam-Johansen, K., Wedel, S., Hansen, J.P.: Review of the direct sulfation reaction of limestone. Prog. Energy Combust. Sci. 32, 386–407 (2006)

    Article  Google Scholar 

  12. Liu, C.-F., Shih, S.-M., Lin, R.-B.: Kinetics of the reaction of Ca(OH)2/ash sorbent with SO2 at low temperatures. Chem. Eng. Sci. 57, 93–104 (2002)

    Article  Google Scholar 

  13. Anthony, E.J., Bulewicz, E.M., Jia, L.: Reactivation of limestone sorbents in FBC for SO2 capture. Prog. Energy Combust. Sci. 33, 171–210 (2007)

    Article  Google Scholar 

  14. Kallinikos, L.E., Farsari, E.I., Spartinos, D.N., Papayannakos, N.G.: Simulation of the operation of an industrial wet flue gas desulfurization system. Fuel Process. Technol. 91, 1794–1802 (2010)

    Article  Google Scholar 

  15. Glomba, M.: Technical description of parameters influencing the pH value of suspension absorbent unsed in flue gas desulfurization process. J. Air Waste Manag. Assoc. 60, 1009–1016 (2009)

    Article  Google Scholar 

  16. Bravo, R.V., Camacho, R.F., Moya, V.M., Garcia, L.A.I.: Desulphurization of SO2-N2 mixtures by limestone slurries. Chem. Eng. Sci. 57, 2047–2058 (2002)

    Article  Google Scholar 

  17. Ahlbeck, J., Engman, T., Fältèn, S., Vihma, M.: Measuring the reactivity of limestone for wet flue-gas desulfurization. Chem. Eng. Sci. 50, 1081–1089 (1995)

    Article  Google Scholar 

  18. Böke, H., Götürk, E.H., Caner-Salik, E.N., Demirci, S.: Effect of airborne particle on SO2-calcite reaction. Appl. Surf. Sci. 140, 70–82 (1999)

    Article  Google Scholar 

  19. Charlot, G.: Chimie analytique quantitative II. Méthodes sélectionnées d’analyse chimique des éléments, vol. 2, XIème ed., pp. 522–524, Masson et cie (1974)

  20. Filippov, L.O., Grandjean, M., Filippova, I.V., Pelletier, M.: Morphology of carbonates particles precipitated from saline waste solution : influence of magnesium. J. Phys. Conf. Ser. In press (2012)

  21. Makkinejad, N.: Reaktivitätstests zur Beurteilung von Kalksteinmehlen für den Einsatz in Rauchgasentschwefelungsanlagen. VGB Kraftw. Tech. 71, 154–160 (1991)

    Google Scholar 

  22. Hosten, C., Gülsün, M.: Reactivity of limestones from different sources in Turkey. Min. Eng. 17, 97–99 (2004)

    Article  Google Scholar 

  23. Elfil, H., Roques, H.: Role of hydrate phases of calcium carbonate on the scaling phenomenon. Desalinisation 137, 177–186 (2001)

    Article  Google Scholar 

  24. Chou, L., Garrels, R.M., Wollast, R.: Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem. Geol. 78, 269–282 (1989)

    Article  Google Scholar 

  25. De Visscher, A., Vanderdeelen, J.: Estimation of the solubility constant of calcite, aragonite, and vaterite at 25 °C based on primary data using the Pitzer ion interaction approach. Monatschefte für Chem. 134, 769–775 (2003)

    Article  Google Scholar 

  26. Farmer, V.C.: The infrared spectra of minerals. Monograph 4, Mineralogical Society, London (1974)

  27. Hughes, T.L., Methven, C.L., Jones, T.G.J., Pelham, S.E., Fletcher, P., Hall, C.: Determining cement composition by Fourier transform infrared spectroscopy. Adv. Cem. Bas. Mat. 2, 91–104 (1995)

    Google Scholar 

  28. Eisenberg, D., Kauzmann, W.: The Structure and Properties of Water. Oxford University Press, London (1969)

    Google Scholar 

  29. Bobicki, E.R., Liu, Q., Xu, Z., Zeng, H.: Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci. 38, 302–320 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The financial and technical support for this work from Solvay is gratefully acknowledged. Mathilde Rousselle is thanked for her help at the beginning of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Filippov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandjean, M., Filippov, L., Filippova, I. et al. Reactivity and Valorization of Products Issued from Carbonation of Saline Waste Solution. Waste Biomass Valor 4, 831–841 (2013). https://doi.org/10.1007/s12649-012-9187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9187-6

Keywords

Navigation