Advertisement

Waste and Biomass Valorization

, Volume 4, Issue 3, pp 509–515 | Cite as

Anaerobic Digestion of Laminaria digitata: The Effect of Temperature on Biogas Production and Composition

  • Carlos Vanegas
  • John Bartlett
Original Paper

Abstract

Seaweed biomass has emerged as an alternative for the production of renewable fuels such as biogas from anaerobic digestion (AD). In relation to the biogas production rate, digester temperature setting is one of the most critical factors for an economically viable digester operation, especially in temperate countries like Ireland, as most annual temperatures are below the mesophilic range. In this study, the effect of digester temperature on biogas and methane production efficiency during the AD of Laminaria digitata was evaluated. 120 ml batch reactors were incubated at 20, 35 and 45 °C for 54 days to determine a temperature profile for the AD process. Reactors incubated at 35 °C produced the highest biogas and methane yields (336 ml biogas/g VS and 184 ml methane/g VS). Thermophilic reactors (45 °C) produced 30 % less biogas and 23.3 % less methane, followed by psychrophilic reactors (20 °C) which produced 41 % less biogas and 39.7 % less methane. A drop in pH in the mesophilic and thermophilic reactors was identified as an inhibitory factor during the first days of digestion. Psychrophilic reactors were better able to withstand the observed changes. Mesophilic temperatures will be used in further studies to examine scaling up of the process.

Keywords

Laminaria digitata Biogas Temperature Mesophilic 

Notes

Acknowledgments

This work was funded by The BioMara project and supported by the European Regional Development Fund through the INTERREG IVA Programme.

References

  1. 1.
    Howley, M., Dennehy, E., Holland, M., Gallachóir, B.P.: Energy in Ireland 1990–2010. Sustainable Energy Authority of Ireland (2011)Google Scholar
  2. 2.
    Singh, A., Nigam, P.S., Murphy, J.D.: Renewable fuels from algae: an answer to debatable land based fuels. Bioresour. Technol. 102, 10–16 (2011)CrossRefGoogle Scholar
  3. 3.
    Gunaseelan, V.N.: Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13, 83–114 (1997)CrossRefGoogle Scholar
  4. 4.
    Nkemka, V.N., Murto, M.: Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J. Environ. Manag. 91, 1573–1579 (2010)CrossRefGoogle Scholar
  5. 5.
    Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484 (2009)CrossRefGoogle Scholar
  6. 6.
    Ahring, B.K., Ibrahim, A.A., Mladenovska, Z.: Effect of temperature increase from 55°C to 65°C on performance on microbial population dynamics of an anaerobic reactor treating cattle manure. Wat. Res. 35(10), 2446–2452 (2001)CrossRefGoogle Scholar
  7. 7.
    Switzenbaum, M.S., Gomez, E.G., Hickey, R.F.: Monitoring of the anaerobic methane fermentation process. Enzym. Microb. Technol. 12(10), 722–773 (1990)CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008)CrossRefGoogle Scholar
  9. 9.
    Kashyap, D.R., Dadhich, K.S., Sharma, S.K.: Biomethanation under psychrophilic conditions: a review. Bioresour. Technol. 87, 147–153 (2003)CrossRefGoogle Scholar
  10. 10.
    Bouallagui, H., Haouari, O., Touhami, Y., Cheikh, R.B., Marouani, L., Hamdi, M.: Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste process. Biochem. 39, 2143–2148 (2004)Google Scholar
  11. 11.
    Chae, K.J., Jang, A., Yim, S.J., Kim, I.S.: The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99, 1–6 (2008)CrossRefGoogle Scholar
  12. 12.
    Komemoto, K., Lim, Y.G., Nagao, N., Onoue, Y., Niwa, C., Toda, C.: Effect of temperature on VFA’s and biogas production in anaerobic solubilisation of food waste. Waste. Manag. 29, 2950–2955 (2009)CrossRefGoogle Scholar
  13. 13.
    Samson, R., LeDuy, A.: Detailed study of anaerobic digestion of Spirulina maxima algal biomass. Biotech. Bioeng. 28(7), 1014–1023 (1986)CrossRefGoogle Scholar
  14. 14.
    Adams, J.M., Toop, T.A., Donnison, I.S., Gallagher, J.A.: Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol. 102, 9976–9984 (2011)CrossRefGoogle Scholar
  15. 15.
    Karakashev, D., Batstone, D.J., Angelidaki, I.: Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl. Environ. Microbiol. 71, 331–338 (2005)CrossRefGoogle Scholar
  16. 16.
    Mladenovska, Z., Ahring, B.K.: Growth kinetics of thermophilic Methanosarcia spp. isolated from full-scale biogas plants treating animal manures. Microb. Ecol. 31, 225–229 (2000)CrossRefGoogle Scholar
  17. 17.
    Varel, V.H., Chen, T.H., Hashimoto, A.G.: Thermophilic and mesophilic methane production from Spirulina maxima. Resour. Conserv. Recycl. 1(1), 19–26 (1988)CrossRefGoogle Scholar
  18. 18.
    Hansson, G.: Methane production from marine, green macro-algae. Resour. Conserv. 8, 185–194 (1983)CrossRefGoogle Scholar
  19. 19.
    Zamalloa, C., Boon, N., Verstraete, W.: Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl. Energy 92, 733–738 (2012)CrossRefGoogle Scholar
  20. 20.
    Golueke, C.G., Oswald, W.J., Gotaas, H.B.: Anaerobic digestion of algae. Appl. Microbiol. 5(1), 47–55 (1957)Google Scholar
  21. 21.
    Grossi, V., Blokker, P., Sinninghe, J.S.: Anaerobic biodegradation of lipids of the marine microalga Nannochloropsis salina. Org. Geochem. 32, 795–808 (2001)CrossRefGoogle Scholar
  22. 22.
    Morand, P., Charlier, R.H., Mazé, J.: European bioconversion projects and realizations for macroalgal biomass: Saint-Cast-le-Guildo, France, experiment. Hydrobiol. 204/205, 301–308 (1990)Google Scholar
  23. 23.
    Klass, D.L., Ghosh, S., Chynoweth, D.: Methane production from aquatic biomass by anaerobic digestion of giant brown kelp. Proc. Biochem. 14(4), 18–23 (1979)Google Scholar
  24. 24.
    Black, W.: The seasonal variation in weight and chemical composition of the common British laminariaceae. J. Mar. Biol. Assoc. 29, 45–72 (1950)CrossRefGoogle Scholar
  25. 25.
    Peu, P., Sassi, F., Girault, R., Picard, S., Saint-Cast, P., Béline, F., Dabert, P.: Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour. Technol. 102, 10794–10802 (2011)CrossRefGoogle Scholar
  26. 26.
    Aoki, K., Umetsu, K., Nishizaki, K., Takahashi, J., Kishimoto, T., Tani, M., Hamamoto, O., Misaki, T.: Thermophilic biogas plant for dairy manure treatment as combined power and heat system in cold regions. Int. Congr. Ser. 1293, 238–241 (2006)CrossRefGoogle Scholar
  27. 27.
    Hanssen, J.F., Indergaard, M., Ostgaard, K., Bevre, O.A., Pedersen, T.A., Jensen, A.: Anaerobic digestion of Laminaria spp. and Ascophyllum nodosum and application of end products. Biomass. 14, 1–13 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Centre for SustainabilityInstitute of Technology SligoSligoRepublic of Ireland

Personalised recommendations