Advertisement

Waste and Biomass Valorization

, Volume 4, Issue 2, pp 341–346 | Cite as

The Essentialness of Delignification on Enzymatic Hydrolysis of Sugar Cane Bagasse Cellulignin for Second Generation Ethanol Production

  • Carolina Araújo Barcelos
  • Roberto Nobuyuki Maeda
  • Gabriel Jaime Vargas Betancur
  • Nei PereiraJr.
Original Paper

Abstract

The enzymatic saccharification of partially delignified cellulignin (PDCL) of sugar cane bagasse was studied to verify how hydrolysis yield and hydrolysis rate were affected by the lignin content. Sodium hydroxide in concentrations ranging from 0.025–1 M (mol/L) was used to partially remove lignin. The remaining solids were subjected to enzymatic hydrolysis using commercial cellulases. The maximum glucose concentration was 40.4 g/L, corresponding to a cellulose conversion efficiency of 50 %; this concentration was achieved with 1 M NaOH. Subsequently, the enzymatic hydrolysis of alkaline non-pretreated samples was performed with different enzyme loads (25–150 FPU/g solids) to evaluate if an increase in enzyme load was necessary to reach the same glucose concentration when using PDCL. We found that all yields of enzymatic hydrolysis of non-pretreated cellulignin were lower when compared with alkaline pretreated samples because of the lignin content.

Keywords

Alkali delignification Enzymatic hydrolysis Glucose Lignocellulosic Sugar cane bagasse 

Notes

Acknowledgments

The authors acknowledge the Brazilian Council for Research (CNPq); the Rio de Janeiro State Foundation for Science and Technology (FAPERJ) and the Brazilian Petroleum Company (PETROBRAS) for scholarship and other financial supports.

References

  1. 1.
    Mabee, W.E., McFarlane, P.N., Saddler, J.N.: Biomass availability for lignocellulosic ethanol production. Biomass. Bioenergy 35(11), 4519–4529 (2011)CrossRefGoogle Scholar
  2. 2.
    Singh, A., Pant, D., Korres, N.E., Nizami, A.S., Prasad, S., Murphy, J.D.: Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour. Technol. 101, 5003–5012 (2010)CrossRefGoogle Scholar
  3. 3.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  4. 4.
    Cardona, C.A., Sánchez, O.J.: Fuel ethanol production: process design trends and integration opportunities. Bioresour. Technol. 98, 2415–2457 (2007)CrossRefGoogle Scholar
  5. 5.
    Lee, J.: Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56, 1–24 (1997)CrossRefGoogle Scholar
  6. 6.
    Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)CrossRefGoogle Scholar
  7. 7.
    Moiser, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)CrossRefGoogle Scholar
  8. 8.
    Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T.: Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 74, 69–80 (2000)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y.H.P., Lynd, L.R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797–824 (2004)CrossRefGoogle Scholar
  10. 10.
    Fan, L.T., Gharpuray, M.M., Lee, Y.H.: Enzymatic hydrolysis–cellulose hydrolysis : biotechnology monographs. In: Aiba, L.T., Fan, A., Fiechter, J., Kleín and Schúgerl (eds.), vol. 3, pp. 1–68, Springer, Berlin, (1987)Google Scholar
  11. 11.
    Ghose, T.K.: Measurement of cellulose activities. Pure. Appl. Chem. 59, 257–268 (1987)CrossRefGoogle Scholar
  12. 12.
    Betancur, G., Pereira Jr, N.: Sugar cane bagasse as feedstock for second generation ethanol production. Part I: diluted acid pretreatment optimization. Electron. J. Biotechnol. 13(3), 1–9 (2010)Google Scholar
  13. 13.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, CO. http://www.nrel.gov/biomass/pdfs/42618.pdf (2008). Accessed 26 October 2009
  14. 14.
    Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D.G., Santas, P., Santas, R., Corleti, V.: Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98, 296–301 (2007)CrossRefGoogle Scholar
  15. 15.
    Scalbert, A., Monties, B., Guittet, E., Lallemand, J.Y.: Comparison of wheat straw lignin preparations I. Chemical and spectroscopic characterizations. Holzforschung 40, 119–129 (1986)CrossRefGoogle Scholar
  16. 16.
    Eriksson, T., Börjesson, J., Tjerneld, F.: Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31(3), 353–364 (2002)CrossRefGoogle Scholar
  17. 17.
    Yang, B., Wyman, C.E.: BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 94(4), 611–617 (2006)CrossRefGoogle Scholar
  18. 18.
    Mansfield, S.D., Mooney, C., Saddler, J.N.: Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol. Prog. 15, 804–816 (1999)CrossRefGoogle Scholar
  19. 19.
    Howell, J.A., Mangat, M.: Enzyme deactivation during cellulose hydrolysis. Biotechnol. Bioeng. 20, 847–863 (1978)CrossRefGoogle Scholar
  20. 20.
    Varga, E., Scengyel, Z., Recaey, K.: Chemical pretreatments of corn stover for enhancing enzymatic digestibility. Appl. Biochem. Biotechnol. 98–100, 73–87 (2002)CrossRefGoogle Scholar
  21. 21.
    Hernández-Salas, J.M., Villa-Ramírez, M.S., Veloz-Rendón, J.S., Rivera-Hernández, K.N., González-César, R.A., Plascencia-Espinosa, M.A., Trejo-Estrada, S.R.: Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour. Technol. 100, 1238–1245 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhao, X., Peng, F., Cheng, K., Liu, D.: Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme Microb. Technol. 44, 17–23 (2009)CrossRefGoogle Scholar
  23. 23.
    Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E., Mussatto, S.: An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. J. Chem. Technol. Biotechnol. 85(8), 1092–1098 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Carolina Araújo Barcelos
    • 1
  • Roberto Nobuyuki Maeda
    • 1
  • Gabriel Jaime Vargas Betancur
    • 1
  • Nei PereiraJr.
    • 1
  1. 1.Laboratories of Bioprocess DevelopmentDepartment of Biochemical Engineering, Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations