Waste and Biomass Valorization

, Volume 2, Issue 3, pp 291–302 | Cite as

Valorization of Residual Agroindustrial Cakes by Fungal Production of Multienzyme Complexes and Their Use in Cold Hydrolysis of Raw Starch

  • Aline Machado de CastroEmail author
  • Thiago Vetter de Andréa
  • Daniele Fernandes Carvalho
  • Mariana Martins Pereira Teixeira
  • Leda dos Reis Castilho
  • Denise Maria Guimarães Freire
Original Paper


In this work four agroindustrial cakes were used as raw material both for production of enzyme pools containing amylases and accessory hydrolases by solid-state fermentation (SSF) and for cold starch hydrolysis. Eight fungal strains from the genera Aspergillus and Penicillium were screened for enzyme production, and their enzyme extracts were then evaluated in the hydrolysis of raw cakes. Babassu cake was the most suitable raw material for endoamylases, exoamylases and proteases production. The highest activities of these three enzymes were produced by A. awamori IOC-3914 (29.8 U g−1), A. wentii (47.8 U g−1) and P. verrucosum (27.5 U g−1), respectively. Regarding cellulases and xylanases, maximum activities (12.8 and 598.0 U g−1, respectively) were obtained by A. awamori IOC-3915 in castor seed residue. Saccharification studies showed a flexible applicability of the raw extracts to hydrolyze different cakes. A maximum total reducing sugars concentration of 13.9 g L−1 was obtained from babassu cake using a raw enzyme extract produced by A. awamori IOC-3915, without any concentration or purification steps. The present results demonstrate that a low-cost SSF process can supply enzyme extracts with a high potential for application in the cold hydrolysis of raw starch from agroindustrial cakes.


Fungal amylases Hydrolases Agroindustrial oil cakes Aspergillus and Penicillium strains Solid-state fermentation Cold starch hydrolysis 



The authors wish to thank Dr. Edmond Baruque (Tocantis Babaçu S.A.) for kindly providing babassu cake and Ms. Mariana Paixão (Membrane Separation Processes and Polymer Laboratory, PAM/COPPE, Federal University of Rio de Janeiro) for her technical assistance in SEM analyses. The authors also gratefully acknowledge the financial support from CNPq, FAPERJ and ANP/PETROBRAS.


  1. 1.
    Godfrey, T., West, S.: Industrial Enzymology. The MacMillan Press Ltd, London (1996)Google Scholar
  2. 2.
    Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., Chauhan, B.: Microbial α-amylases: a biotechnological perspective. Proc. Biochem. 38, 1599–1616 (2003)CrossRefGoogle Scholar
  3. 3.
    Norouzian, D., Akbarzadeh, A., Scharer, J.M., Young, M.M.: Fungal glucoamylases. Biotechnol. Adv. 24, 80–85 (2006)CrossRefGoogle Scholar
  4. 4.
    Van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., Dijkhuizen, L.: Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94, 137–155 (2002)CrossRefGoogle Scholar
  5. 5.
    Ramachandran, S., Patel, A.K., Nampoothiri, K.M., Chandran, S., Szakacs, G., Soccol, C.R., Pandey, A.: Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz. Arch. Biol. Technol. 47, 309–317 (2004)CrossRefGoogle Scholar
  6. 6.
    Faostat : Accessed in: March 28th, 2011
  7. 7.
    Gombert, A.K., Pinto, A.L., Castilho, L.R., Freire, D.M.G.: Lipase production by Penicillium restrictum in solid state fermentation using babassu oil cake as substrate. Proc. Biochem. 35, 85–90 (1999)CrossRefGoogle Scholar
  8. 8.
    Baruque Filho, E.A., Baruque, M.G.A., Sant’Anna Jr, G.L.: Babassu coconut starch liquefaction: an industrial scale approach to improve conversion yield. Bioresour. Technol. 75, 49–55 (2000)CrossRefGoogle Scholar
  9. 9.
    Kunamneni, A., Permaul, K., Singh, S.: Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J. Biosci. Bioeng. 100, 168–171 (2005)CrossRefGoogle Scholar
  10. 10.
    Vidal Jr, B.C., Rausch, K.D., Tumbleson, M.E., Singh, V.: Protease treatment to improve ethanol fermentation in modified dry grind corn process. Cereal Chem. 86, 323–328 (2009)CrossRefGoogle Scholar
  11. 11.
    Wang, P., Johnston, D.B., Rausch, K.D., Schmidt, S.J., Tumbleson, M.E., Singh, V.: Effects of protease and urea on a granular starch hydrolyzing process for corn ethanol production. Cereal Chem. 86, 319–322 (2009)CrossRefGoogle Scholar
  12. 12.
    Kim, Y., Mosier, N., Ladisch, M.R.: Process simulation of modified dry grind ethanol plant with recycle of pretreated and enzymatically hydrolyzed distillers’ grains. Bioresour. Technol. 99, 5177–5192 (2008)CrossRefGoogle Scholar
  13. 13.
    Polaina, J., MacCabe, A.P.: Industrial Enzymes: Structure, Functions and Applications. Springer, Dordrecht (2007)Google Scholar
  14. 14.
    Berven, D.: The making of broin Project X. Ethanol Prod. Mag. 11, 67–71 (2005)Google Scholar
  15. 15.
    Galvez, A.: Analyzing cold enzyme starch hydrolysis technology in new ethanol plant design. Ethanol Prod. Mag. 11, 58–60 (2005)Google Scholar
  16. 16.
    Robertson, G.H., Wong, D.W.S., Lee, C.C., Wagschal, K., Smith, M.R., Orts, W.J.: Native or raw starch digestion: a key step in energy efficient biorefining of grain. J. Agri. Food Chem. 54, 353–365 (2006)CrossRefGoogle Scholar
  17. 17.
    Gibreel, A., Sandercock, J.R., Lan, J., Goonewardene, L.A., Zijlstra, R.T., Curtis, J.M., Bressler, D.C.: Fermentation of barley by using Saccharomyces cerevisiae: examination of barley as a feedstock for bioethanol production and value-added products. Appl. Environ. Microbiol. 75, 1363–1372 (2009)CrossRefGoogle Scholar
  18. 18.
    Matsubara, T., Ammar, Y.B., Anindyawati, T., Yamamoto, S., Ito, K., Iizuka, M., Minamiura, N.: Degradation of raw starch granules by α-amylase purified from culture of Aspergillus awamori KT-11. J. Biochem. Mol. Biol. 37, 422–428 (2004)CrossRefGoogle Scholar
  19. 19.
    Ertan, F., Yagar, H., Balkan, B.: Some properties of free and immobilized α-amylase from Penicillium griseofulvum by solid-state fermentation. Prep. Biochem. Biotechnol. 36, 81–91 (2006)CrossRefGoogle Scholar
  20. 20.
    Castro, A.M., Carvalho, M.L.A., Leite, S.G.F., Pereira Jr, N.: Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J. Ind. Microbiol. Biotechnol. 37, 151–158 (2010)CrossRefGoogle Scholar
  21. 21.
    De Vries, R., Visser, J.: Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65, 497–522 (2001)CrossRefGoogle Scholar
  22. 22.
    Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)CrossRefGoogle Scholar
  23. 23.
    Olajuyigbe, F.M.: Influence of media composition on acid protease production by Aspergillus niger (NRRL-1785). Global J. Pure. Appl. Sci. 12, 85–88 (2006)Google Scholar
  24. 24.
    Khalil, C.N., Leite, L.: Process for producing biodiesel fuel using triglyceride-rich oleaginous seed directly in a transesterification reaction in the presence of an alkaline alkoxide catalyst. US Patent 7112229 (2006)Google Scholar
  25. 25.
    AOAC: AOAC Official Method 996.11: Starch (Total) in Cereal Products. Official Methods of Analysis of the AOAC International, 16th Ed. Supplement 1998. AOAC, Washington (1995)Google Scholar
  26. 26.
    Britton, H.T.S., Robinson, R.E.: Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. 1931, 1456–1462 (1931)CrossRefGoogle Scholar
  27. 27.
    Fernandes, L.P., Ulhoa, C.J., Asquieri, E.R., Monteiro, V.N.: Produção de amilases pelo fungo Macrophomina phaseolina. Revista Eletrônica de Farmácia IV, 43–51 (2007)Google Scholar
  28. 28.
    Figueira, E.L.Z., Hirooka, E.Y.: Culture medium for amylase production by toxigenic fungi. Braz. Arch. Biol. Technol. 43, 461–467 (2000)CrossRefGoogle Scholar
  29. 29.
    Riaz, M., Perveen, R., Javed, M.R., Nadeem, H., Rashid, M.H.: Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb. Technol. 41, 558–564 (2007)CrossRefGoogle Scholar
  30. 30.
    Bendicho, S., Martí, G., Hernández, T., Martín, O.: Determination of proteolytic activity in different milk systems. Food Chem. 79, 245–249 (2002)CrossRefGoogle Scholar
  31. 31.
    Sumner, J.B.: Dinitrosalicylic acid: a reagent for the estimation of sugar in normal and diabetic urine. J. Biol. Chem. 47, 5–9 (1921)Google Scholar
  32. 32.
    Alva, S., Anupama, J., Savla, J., Chiu, Y.Y., Vyshali, P., Shruti, M., Yogeetha, B.S., Bhavya, D., Purvi, J., Ruchi, K., Kumudini, B.S., Varalakshmi, K.N.: Production and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI12 in solid state culture. Afr. J. Biotechnol. 6, 576–581 (2007)Google Scholar
  33. 33.
    Costa, J.A.V., Colla, E., Magagnin, G., Santos, L.O., Vendruscolo, M., Bertolin, T.E.: Simultaneous amyloglucosidase and exo-polygalacturonase production by Aspergillus niger using solid-state fermentation. Braz. Arch. Biol. Technol. 50, 759–766 (2007)CrossRefGoogle Scholar
  34. 34.
    Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., Mohan, R.: Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135–152 (2000)CrossRefGoogle Scholar
  35. 35.
    Prakasham, R.S., Rao, C.S., Rao, R.S., Sarma, P.N.: Enhancement of acid amylase production by an isolated Aspergillus awamori. J. Appl. Microbiol. 102, 204–211 (2007)CrossRefGoogle Scholar
  36. 36.
    Sauer, J., Sigurskjold, B.W., Christensen, U., Frandsen, T.P., Mirgorodskaya, E., Harrison, M., Roepstorff, P., Svensson, B.: Glucoamylase: structure/function relationships, and protein engineering. Biochim. Biophys. Acta 1543, 275–293 (2000)CrossRefGoogle Scholar
  37. 37.
    Kempka, A.P., Lipke, N.L., Pinheiro, T.L.F., Menoncin, S., Treichel, H., Freire, D.M.G., Di Luccio, M., Oliveira, D.: Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng. 31, 119–125 (2008)CrossRefGoogle Scholar
  38. 38.
    Viniegra-González, G., Favela-Torres, E., Aguilar, C.N., Romero-Gomez, S.J., Diaz-Godínez, G., Augur, C.: Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13, 157–167 (2003)CrossRefGoogle Scholar
  39. 39.
    Mitchell, D.A., von Meien, O.F., Krieger, N.: Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochem. Eng. J 13, 137–147 (2003)CrossRefGoogle Scholar
  40. 40.
    Müller, C., McIntyre, M., Hansen, K., Nielsen, J.: Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl. Environ. Microbiol. 68, 1827–1836 (2002)CrossRefGoogle Scholar
  41. 41.
    Gutarra, M.L.E., Godoy, M.G., Silva, J.N., Guedes, I.A., Lins, U., Castilho, L.R., Freire, D.M.G.: Lipase production and Penicillium simplicissimum morphology in solid-state and submerged fermentations. Biotechnol. J. 4, 1450–1459 (2009)CrossRefGoogle Scholar
  42. 42.
    Hölker, U., Lenz, J.: Solid-state fermentation—are there any biotechnological advantages? Curr. Opin. Microbiol. 8, 301–306 (2005)CrossRefGoogle Scholar
  43. 43.
    Rajagopalan, S., Modak, J.M.: Evaluation of relative growth limitation due to depletion of glucose and oxygen during fungal growth on a spherical solid particle. Chem. Eng. Sci. 50, 803–811 (1995)CrossRefGoogle Scholar
  44. 44.
    Vidal Jr, B.C., Rausch, K.D., Tumbleson, M.E., Singh, V.: Kinetics of granular starch hydrolysis in corn dry-grind process. Starch/Stärke 61, 448–456 (2009)CrossRefGoogle Scholar
  45. 45.
    Balan, V., Rogers C.A., Chundawat, S.P.S., Sousa, L.C., Slininger, P.J., Gupta, R., Dale, B.E.: Conversion of extracted oil cake fibers into bioethanol including DDGS, canola, sunflower, sesame, soy, and peanut for integrated biodiesel processing. J. Am. Oil Chem. Soc. 86, 157–165 (2009)Google Scholar
  46. 46.
    Zhang, Y.H.P., Lynd, L.R.: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulose systems. Biotechnol. Bioeng. 88, 797–824 (2004)CrossRefGoogle Scholar
  47. 47.
    Castro, A.M., Pereira Jr, N.: Production, properties and application of cellulases in the hydrolysis of agroindustrial residues. Quim. Nova 33, 181–188 (2010)CrossRefGoogle Scholar
  48. 48.
    Lang, X., Hill, G.A., MacDonald, D.G.: Recycle bioreactor for bioethanol production from wheat starch I. Cold enzyme hydrolysis. Energy Sour 23, 417–425 (2001)CrossRefGoogle Scholar
  49. 49.
    Sarikaya, E., Higasa, T., Adachi, M., Mikami, B.: Comparison of degradation abilities of α- and β-amylases on raw starch granules. Proc. Biochem. 35, 711–715 (2000)CrossRefGoogle Scholar
  50. 50.
    Textor, S.D., Hill, G.A., MacDonald, D.G., Denis, E.S.T.: Cold enzyme hydrolysis of wheat starch granules. Can. J. Chem. Eng. 76, 87–93 (1998)CrossRefGoogle Scholar
  51. 51.
    Faulds, C.B., Robertson, J.A., Waldron, K.W.: Effect of pH on solubilization of brewer’s spent grain by microbial carbohydrases and proteases. J. Agric. Food Chem. 56, 7038–7043 (2008)CrossRefGoogle Scholar
  52. 52.
    Melo, W.C., Santos, A.S., Santa Anna, L.M.M., Pereira Jr, N.: Acid and enzymatic hydrolysis of the residue from castor seed (Ricinus communis L.) oil extraction for ethanol production: detoxification and biodiesel process integration. J. Braz. Chem. Soc. 19, 418–425 (2008)CrossRefGoogle Scholar
  53. 53.
    Castro, A.M., Carvalho, D.F., Freire, D.M.G., Castilho, L.R.: Economic analysis of the production of amylases and other hydrolases by Aspergillus awamori in solid-state fermentation of babassu cake. Enzyme Res. 2010. Article ID 576872. doi: 10.4061/2010/576872
  54. 54.
    Castilho, L.R., Polato, C.M.S., Baruque, E.A., Sant’Anna Jr, G.L., Freire, D.M.G.: Economic analysis of lipase production by Penicillium restrictum in solid-state and submerged fermentations. Biochem. Eng. J. 4, 239–247 (2000)CrossRefGoogle Scholar
  55. 55.
    Castro, A.M., Andrea, T.V., Castilho, L.R., Freire, D.M.G.: Use of mesophilic fungal amylases produced by solid-state fermentation in the cold hydrolysis of raw babassu cake starch. Appl. Biochem. Biotechnol. 162, 1612–1625 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Aline Machado de Castro
    • 1
    • 2
    Email author
  • Thiago Vetter de Andréa
    • 2
  • Daniele Fernandes Carvalho
    • 2
  • Mariana Martins Pereira Teixeira
    • 2
  • Leda dos Reis Castilho
    • 2
  • Denise Maria Guimarães Freire
    • 3
  1. 1.Renewable Energy Division, Research and Development Center, PETROBRASRio de JaneiroBrazil
  2. 2.COPPE, Chemical Engineering ProgramFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Institute of ChemistryFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations