Waste and Biomass Valorization

, Volume 2, Issue 3, pp 317–321 | Cite as

A Review: Valorization of Keratinous Materials

  • Katarzyna ChojnackaEmail author
  • Helena Górecka
  • Izabela Michalak
  • Henryk Górecki



The aim of the present work was to discuss the current state-of-the-art in the methods of utilization of keratinous materials. Various approaches were discussed—thermal, physical, chemical and biological.


Keratinous wastes can be used as the feedstock, however processing is required to valorize the waste. Among the processing methods, several hydrolytic technologies can be mentioned: hydrothermal methods, enzymatic hydrolysis, bioconversion. Chemical hydrolysis requires the step of neutralization and some nutritive amino acids are lost. Among hydrothermal methods which require high temperature and pressure conditions, acidic hydrolysis assures more complete degradation of keratin than basic. The obtained product can be used as low-quality livestock feed. Another method to obtain solubilized keratin is degradation by lime. More advantageous are enzymatic and bioconversion methods which assure milder conditions and preserve nutritional properties of the produced meal.


The hydrolyzate can be used as the source of amino acids and peptides in the production of feeds and fertilizers.


Keratinous materials Utilization Livestock feed Fertilizers Valorization Keratinous materials 



The work was supported by Polish Ministry of Science and Higher Education—project nr N N204 019135, NR05-0008-06/2009, NR05-0014-10/2010.


  1. 1.
    Daroit, D.J., Correa, P.F., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodet. Biodegr. 63, 358–363 (2009)CrossRefGoogle Scholar
  2. 2.
    Vesela, M., Friedrich, J.: Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii. Biotechnol. Bioprocess Eng. 14, 84–90 (2009)CrossRefGoogle Scholar
  3. 3.
    Moreira, F.G., de Souza, C.G.M., Costa, M.A.F., Reis, S., Peralta, R.M.: Degradation of keratinous materials by the plant pathogenic fungus Myrothecium verrucaria. Mycopathologia 163, 153–160 (2007)CrossRefGoogle Scholar
  4. 4.
    Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A., Al-Zarban, S.: A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresource Technol 66, 1–11 (1998)CrossRefGoogle Scholar
  5. 5.
    Choi, J.M., Nelson, P.V.: Developing a slow-release nitrogen fertilizer from organic sources. 2. Using poultry feathers. J. Am. Soc. Horticul. Sci 121, 634–638 (1996)Google Scholar
  6. 6.
    Collins, S.N., Cope, B.C., Hopegood, L., Latham, R.J., Linford, R.G., Reilly, J.D.: Stiffness as a function of moisture content in natural materials: characterisation of hoof horn samples. J. Mater. Sci. 33, 5185–5191 (1998)CrossRefGoogle Scholar
  7. 7.
    Grazziotin, A., Pimentel, F.A., de Jong, E.V., Brandelli, A.: Nutritional improvement of feather protein by treatment with microbial keratinase. Anim. Feed Sci. Tech. 126, 135–144 (2006)CrossRefGoogle Scholar
  8. 8.
    McLean, C.M., Koller, C.E., Rodger, J.C., MacFarlance, G.R.: Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments. Sci. Total Environ. 407, 3588–3596 (2009)CrossRefGoogle Scholar
  9. 9.
    Kurbanoglu, E.B.: Enhancement of citric acid production with ram horn hydrolysate by Aspergillus niger. Biores. Technol. 92, 97–101 (2004)CrossRefGoogle Scholar
  10. 10.
    Suzuki, Y., Tsujimoto, Y., Matsui, H., Watanabe, K.: Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J. Biosci. Bioeng. 102, 73–81 (2006)CrossRefGoogle Scholar
  11. 11.
    Coward-Kelly, G., Chang, V.S., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1 Chicken feathers. Bioresource Technol 97, 1337–1343 (2006)CrossRefGoogle Scholar
  12. 12.
    Tsuboi, Y., Kimoto, N., Kabeshita, M., Itaya, A.: Pulsed laser deposition of collagen and keratin. J. Photoch. Photob. C 145, 209–214 (2001)CrossRefGoogle Scholar
  13. 13.
    Tanabe, T., Okitsu, N., Yamauchi, Y.: Fabrication and characterization of chemically crosslinked keratin films. Mat. Sci. Eng. C 24, 441–446 (2004)CrossRefGoogle Scholar
  14. 14.
    Yamauchi, K., Yamauchi, A., Kusunoki, T., Kohda, A., Konishi, Y.: Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biomed. Mater. Res. 31, 439–444 (1996)CrossRefGoogle Scholar
  15. 15.
    Dalev, P., Neitchev, V.: Reactivity of alkaline proteinase to keratin and collagen containing substances. Appl. Biochem. Biotechnol. 27, 131–138 (1991)CrossRefGoogle Scholar
  16. 16.
    Gupta, R., Ramnani, P.: Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70, 21–33 (2006)CrossRefGoogle Scholar
  17. 17.
    Kida, K., Morimura, S., Noda, J.: Enzymatic hydrolysis of the horn and hoof of cow and buffalo. J. Ferment. Bioeng. 80, 478–484 (1995)CrossRefGoogle Scholar
  18. 18.
    Coward-Kelly, G., Agbogbo, F.K., Holtzapple, M.T.: Lime treatment of keratinous materials for the generation of highly digestible animal feed: 2. Animal hair. Biores. Technol. 97, 1344–1352 (2006)CrossRefGoogle Scholar
  19. 19.
    Bertsch, A., Coello, N.: A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Biores. Technol. 96, 1703–1708 (2005)CrossRefGoogle Scholar
  20. 20.
    Kumar, C.G., Takagi, H.: Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol. Adv. 17, 561–594 (1999)CrossRefGoogle Scholar
  21. 21.
    Balint, B., Bagi, Z., Toth, A., Rakhely, G., Perei, K., Kovacs, K.L.: Utilization of keratin-containing biowaste to produce biohydrogen. Appl. Microbiol. Biotechnol. 69, 404–410 (2005)CrossRefGoogle Scholar
  22. 22.
    El-Refai, H.A., AbdelNaby, M.A., Gaballa, A., El-Araby, M.H., Abdel-Fattah, A.F.: Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Proc. Biochem. 40, 2325–2332 (2005)CrossRefGoogle Scholar
  23. 23.
    Anwar, A., Saleemuddin, M.: Alkaline proteases: a review. Biores. Technol. 64, 175–183 (1998)CrossRefGoogle Scholar
  24. 24.
    Kurbanoglu, E.B., Kurbanoglu, N.I.: Production of citric acid from ram horn hydrolysate by Aspergillus niger. Proc. Biochem. 38, 1421–1424 (2003)CrossRefGoogle Scholar
  25. 25.
    Kurbanoglu, E.B., Kurbanoglu, N.I.: Utilization for lactic acid production with a new acid hydrolysis of ram horn waste. FEMS Microbiol. Lett. 225, 29–34 (2003)CrossRefGoogle Scholar
  26. 26.
    Kurbanoglu, E.B., Kurbanoglu, N.I.: Utilization as peptone for glycerol production of ram horn waste with a new process. Energ. Convers. Manag. 45, 225–234 (2004)CrossRefGoogle Scholar
  27. 27.
    Kurbanoglu, E.B.: Enhancement of glycerol production with ram horn hydrolysate by yeast. Energ. Convers. Manage. 44, 2125–2133 (2003)CrossRefGoogle Scholar
  28. 28.
    Kurbanoglu, E.B., Algur, O.F.: The influence of ram horn hydrolyzate on the crop yield of the mushroom Agaricus bisporus. Sci. Hortic. 94, 351–357 (2002)CrossRefGoogle Scholar
  29. 29.
    Kurbanoglu, E.B., Kurbanoglu, N.I.: A new process for the utilization as peptone of Ram Horn waste. J. Biosci. Bioeng. 94, 202–206 (2002)CrossRefGoogle Scholar
  30. 30.
    Kurbanoglu, E.B., Algur, O.F.: Single-cell protein production from ram horn hydrolysate by bacteria. Biores. Technol. 85, 125–129 (2002)CrossRefGoogle Scholar
  31. 31.
    Barrena, R., Pagans, E., Artola, A., Vazquez, F., Sanchez, A.: Co-composting of hair waste from the tanning industry with de-inking and municipal wastewater sludges. Biodegradation 18, 257–268 (2007)CrossRefGoogle Scholar
  32. 32.
    Endres, L., Mercier, H.: Amino acid uptake and profile in bromeliads with different habits cultivated in vitro. Plant Physiol. Biochem. 41, 181–187 (2003)CrossRefGoogle Scholar
  33. 33.
    Cahill, T.M., Anderson, D.W., Elbert, R.A., Perley, B.P., Johnson, D.R.: Elemental profiles in feather samples from a mercury-contaminated lake in Central California. Arch. Environ. Contam. Toxicol. 35, 75–81 (1998)CrossRefGoogle Scholar
  34. 34.
    Poole, A.J., Church, J.S., Mickey, G.: Huson environmentally sustainable fibers from regenerated protein. Biomacromolecules 10, 1–8 (2009)CrossRefGoogle Scholar
  35. 35.
    Daroit, D.J., Correa, P.F., Brandelli, A.: Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus. Int. Biodet. Biodegr. 63, 358–363 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Katarzyna Chojnacka
    • 1
    Email author
  • Helena Górecka
    • 1
  • Izabela Michalak
    • 1
  • Henryk Górecki
    • 1
  1. 1.Institute of Inorganic Technology and Mineral FertilizersWrocław University of TechnologyWrocławPoland

Personalised recommendations