Waste and Biomass Valorization

, Volume 1, Issue 4, pp 415–430 | Cite as

Techno-Economic Analysis of Fast Pyrolysis as a Process Step Within Biomass-to-Liquid Fuel Production

  • Frederik Trippe
  • Magnus Fröhling
  • Frank Schultmann
  • Ralph Stahl
  • Edmund Henrich


This paper investigates the decentralized fast pyrolysis process step which converts biomass into a so-called biosyncrude consisting of pyrolysis liquids and char. The biosyncrude can be further processed to synthetic fuels via pressurized entrained flow gasification, gas cleaning and synthesis in biomass-to-liquid fuel production concepts such as the considered bioliq concept. This two-stage concept allows the economic and ecological transportation of biomass over long distances, due to the relatively high energy density of the biosyncrude produced in the first stage. In addition, reductions in specific investments and costs for further processing in the second stage are enabled by economies of scale. This paper addresses possibilities for the further process development and presents an outlook for a commercial implementation of a biomass-derived biosyncrude production. Within the techno-economic analysis, eight different configurations for the pyrolysis process are assessed and compared from an economic and energetic point of view to identify the currently most promising technology. The techno-economic analysis of the decentralized pyrolysis plant with a capacity of 100 MW thermal energy input concludes that at present, it is possible to produce the biosyncrude in Germany at costs of about 35 €/MWh compared to 22 €/MWh for natural gas or 15 €/MWh for coal which are inputs for coal-to-liquid and gas-to-liquid processes. Production costs for the biosyncrude consist of 50% biomass feedstock costs and 30% investment dependent costs; personnel and electric energy are only minor contributors.


Fast pyrolysis Biomass-to-liquid Techno-economic analysis 


  1. 1.
    International Energy Agency: World Energy Outlook. OECD/IEA, Paris (2008)Google Scholar
  2. 2.
    Sasol Limited: Sasol Facts – Your Blueprint to the World of Sasol. Johannesburg (2009)Google Scholar
  3. 3.
    Royal Dutch Shell plc.: Annual Report for the fiscal year ended December 31, 2009. The Hague (2009)Google Scholar
  4. 4.
    Henrich, E., Dahmen, N., Dinjus, E.: Cost estimate for biosynfuel production via biosyncrude gasification. Biofuels Bioprod. Biorefin. 3(1), 28–41 (2009)CrossRefGoogle Scholar
  5. 5.
    Bridgwater, A.V., Toft, A.J., Brammer, J.G.: A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sustainable Energy Rev. 6(3), 181–246 (2002)CrossRefGoogle Scholar
  6. 6.
    Faaij, A.: Modern biomass conversion technologies. Mitig. Adaptation Strategies Glob Change 11(2), 335–367 (2006)CrossRefGoogle Scholar
  7. 7.
    Kerdoncuff, P.: Modellierung und Bewertung von Prozessketten zur Herstellung von Biokraftstoffen der zweiten Generation. Universitätsverlag, Karlsruhe (2008)Google Scholar
  8. 8.
    Wright, M., Brown, R., Boateng, A.: Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels Bioprod. Biorefin. 2(3), 229–238 (2008)CrossRefGoogle Scholar
  9. 9.
    Leible, L., Kälber, S., Kappler, G., Lange, S., Nieke, E., Proplesch, P., Wintzer, D., Fürniß, B.: Kraftstoff, Strom und Wärme aus Stroh und Waldrestholz–Eine systemanalytische Untersuchung. Forschungszentrum Karlsruhe, Karlsruhe (2007)Google Scholar
  10. 10.
    Dahmen, N., Dinjus, E., Henrich, E., Kornmayer, C., Stahl, R., Weirich, F.: Schnellpyrolyse zur Vorbehandlung von Biomasse und Erzeugung von Bioslurrys als Zwischenbrennstoff. Chem. Ing. Tech. 79(9), 1326–1327 (2007)CrossRefGoogle Scholar
  11. 11.
    Raffelt, K., Henrich, E., Koegel, A., Stahl, R., Steinhardt, J., Weirich, F.: The BTL2 process of biomass utilization entrained-flow gasification of pyrolyzed biomass slurries. Appl. Biochem. Biotechnol. 129–132, 153–164 (2006)CrossRefGoogle Scholar
  12. 12.
    Channiwala, S.A., Parikh, P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8), 1051–1063 (2002)CrossRefGoogle Scholar
  13. 13.
    Kornmayer, C.: Verfahrenstechnische untersuchungen zur schnellpyrolyse von lignocellulose im doppelschnecken-mischreaktor. Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe (2009)Google Scholar
  14. 14.
    Peters, M., Timmerhaus, K., West, R.: Plant Design and Economics for Chemical Engineers. McGraw-Hill, Boston (2003)Google Scholar
  15. 15.
    Bridgwater, A.V.: Biomass fast pyrolysis. Therm. Sci. 8(2), 21–49 (2004)CrossRefGoogle Scholar
  16. 16.
    Soluntausta, Y., Bridgwater, T., Beckman, D.: Electricity Production by Advanced Biomass Power Systems. VTT Technical Research Centre of Finland, Espoo (1996)Google Scholar
  17. 17.
    Vauck, W., Müller, H.: Grundoperationen Chemischer Verfahrenstechnik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (2000)Google Scholar
  18. 18.
    Lozowski, D.: Economic indicators. Chem. Eng. 116(4), 71–72 (2009)Google Scholar
  19. 19.
    European Commission: EU budget 2009 – Sustainable development and innovation at the core of the EU budget. Luxembourg (2009)Google Scholar
  20. 20.
    Blake, D.: Financial Market Analysis. John Wiley & Sons, Chichester (2000)Google Scholar
  21. 21.
    Henrich, E., Dinjus, E.: Die pyrolyseslurry-vergasung des forschungszentrums Karlsruhe. In: Fachagentur Nachwachsende Rohstoffe, E.V. (ed.) Synthetische Biokraftstoffe, pp. 236–268. Landwirtschaftsverlag, Münster (2005)Google Scholar
  22. 22.
    Lange, S.: Systemanalytische Untersuchung zur Schnellpyrolyse als Prozessschritt bei der Produktion von Synthesekraftstoffen aus Stroh und Waldrestholz. Universitätsverlag, Karlsruhe (2008)Google Scholar
  23. 23.
    Bayer, W.: Energie auf einen Blick–Ausgabe 2009. Federal Statistical Office, Wiesbaden (2009)Google Scholar
  24. 24.
    Perry, R.H., Green, D.W.: Perry’s Chemical Engineers’ Handbook. McGraw-Hill, New York (1997)Google Scholar
  25. 25.
    Schley, H.: Drittlandssteinkohlepreise – Stand: 3. März 2009. Federal Office of Economics and Export Control, Eschborn (2009)Google Scholar
  26. 26.
    Benduhn, J.: Erdgasimporte März 2009. Federal Office of Economics and Export Control, Eschborn (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Frederik Trippe
    • 1
  • Magnus Fröhling
    • 1
  • Frank Schultmann
    • 1
  • Ralph Stahl
    • 2
  • Edmund Henrich
    • 2
  1. 1.Institute for Industrial ProductionKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute for Technical Chemistry – Division of Chemical–Physical ProcessingKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations