Advertisement

Waste and Biomass Valorization

, Volume 1, Issue 1, pp 65–76 | Cite as

Biomass Residues in Brazil: Availability and Potential Uses

  • Viridiana Ferreira-Leitão
  • Leda Maria Fortes Gottschalk
  • Maria Antonieta Ferrara
  • Alexandre Lima Nepomuceno
  • Hugo Bruno Correa Molinari
  • Elba P. S. BonEmail author
Article

Abstract

Agroindustrial and forestry residues, which are by-products of key industrial and economical activities, stand out as potential raw materials for the production of renewable fuels, chemicals and energy. The use of wastes is advantageous as their availability is not hindered by a requirement for arable land for the production of food and feed. In addition, waste utilization prevents its accumulation, which is of great environmental concern due to its potential for contamination of rivers and underground water. In Brazil, the agroindustry of corn (13767400 ha), sugarcane (7080920 ha), rice (2890930 ha), cassava (1894460 ha), wheat (1853220 ha), citrus (930591 ha), coconut (283205 ha), and grass (140000 ha) collectively occupies an area of 28840726 ha (FAOSTAT, http://www.faostat.fao.org/site/567/default.aspx#ancor) and generates 597 million tons of residue per year. By itself, this scale of operation calls for new solutions aiming for the appropriate utilization of these valuable resources. However, innovative dealings must be environmentally and economically acceptable and, most importantly, have social meaning. Indeed, great social benefits could draw from novel year-round activities as alternatives for the typical seasonal jobs in agroindustry. Considering the production of biomass ethanol, the abundance of feedstock near the site of processing must be taken into account, as low-density biomass involves significant handling and transportation costs. Within this context, the crushed stalk of sugar cane (bagasse) and straw are obvious choices, although bagasse is often burned for the production of steam (heat) and power/electricity in sugar-ethanol mills and important amounts of straw are needed to keep the soil nutrients balance. Other agricultural by-products of importance in Brazil, such as corn straw, wheat straw, rice straw and rice hulls, grass and forestry materials and residues from citrus, coconut and cassava processing, also deserve attention as local feedstock for the development of new and profitable activities. As each type of feedstock demands the development of tailor-made technology, the diversity of the aforementioned raw materials could allow for new solutions for the production of chemicals, fuels and energy in accordance with the local availability of these materials.

Keywords

Brazilian agroindustrial residues Agroenergy Biomass ethanol Renewable resources Sugar cane bagasse Sugar cane straw 

References

  1. 1.
  2. 2.
    Sims, R., Taylor, M., Saddler, J., Mabee, W.: From 1st to 2nd generation biofuel technologies. OECD/IEA (2008)Google Scholar
  3. 3.
    França, R., Nogueira, L.A.H.: Setenta questões para entender o etanol. Revista Veja 2052, 104–114 (2008)Google Scholar
  4. 4.
    Junginger, M., Bolkesjø, T., Bradley, D., Dolzan, P., Faaij, A., Heinimöe, J., Hektorf, B., Leistadg, O., Lingh, E., Perry, M., Piacente, E., Rosillo-Calle, F., Ryckmansj, Y., Schouwenberg, P., Solberg, B., Trømborg, E., Walter, A., Wit, M.: Developments in international bioenergy trade. Biomass Bioenergy 32, 717–729 (2008)CrossRefGoogle Scholar
  5. 5.
    Qureshi, N., Saha, B.C., Hector, R.E., Hughes, S.R., Cotta, M.A.: Butanol production from wheat straw by simultaneous saccharification and fermentation using clostridium beijerinckii: PartiI–Batch fermentation. Biomass Bioenergy 32, 168–175 (2008)CrossRefGoogle Scholar
  6. 6.
    Goldemberg, J.: The Brazilian biofuel industry. Biotechnol. Biofuels 6, 1–7 (2008)Google Scholar
  7. 7.
    Lora, E.S., Andrade, R.V.: Biomass as energy source in Brazil. Renew. Sust. Energ. Rev. 13, 777–788 (2009)CrossRefGoogle Scholar
  8. 8.
    Bon, E.P.S., Ferrara, M.A.: Bioethanol production via enzymatic hydrolysis of cellulosic biomass. Fao symposium on the role of agricultural biotechnologies for production of bioenergy in developing countries. In: Food and Agriculture Organization of the United Nations FAO Symposium—Roma (2008)Google Scholar
  9. 9.
    Empresa Brasileira de Pesquisa Energética. www.epe.gov.br. Accessed December 2008
  10. 10.
    Instituto Brasileiro de Geografia Estatística. www.ibge.gov.br. Accessed October 2009
  11. 11.
    Nogueira, L.A.H.: Co-products of sugarcane bioethanol. In: BNDES, CGEE (eds.) Sugarcane-based bioethanol: energy for sustainable development. Rio de Janeiro, Brazil (2008)Google Scholar
  12. 12.
    Oliveira et al. http://www.revistapesquisa.fapesp.br/Edição 154 (1999). Accessed October 2009
  13. 13.
    Brazilian Federal Law 2661 and State of São Paulo Law Nº 11241 dated 19/09/2002Google Scholar
  14. 14.
    Saha, B.C., Bothast, R.J.: Pretreatment and enzymatic saccharification of corn fiber. Appl. Biochem. Biotechnol. 76, 65–77 (2007)CrossRefGoogle Scholar
  15. 15.
    Osborn, D., Chen, L.F.: Die Starke. Starch. 36, 393 (1984)CrossRefGoogle Scholar
  16. 16.
    Grohmann, K., Bothast, R.J.: Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32, 405 (1997)CrossRefGoogle Scholar
  17. 17.
    Krishnan, M.S., Xia, Y., Ho, N.W.Y., Tsao, G.T.: Fuel ethanol production from lignocellulosic sugars: studies using genetically engineered Sacharomyce yeast. ACS Symp. Ser. 666, 74 (1997)CrossRefGoogle Scholar
  18. 18.
    Moniruzzaman, M., Dien, B.S., Skory, C.D., Chen, Z.D., Hespell, R.B., Ho, N.W.Y., Dale, B.E., Bothast, R.J.: Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J. Microbiol. Biotechnol. 13, 341 (1997)CrossRefGoogle Scholar
  19. 19.
    Gong C.S., Cao N.J., Du, J., Tsao, G.T.: Ethanol production from renewable resources. Advances in biochemical engineering/biotechnology, vol. 65. Managing Editor: Th. Scheper. Springer-Verlag Berlin Heidelberg, pp 207–241 (1999)Google Scholar
  20. 20.
    Tiffany, D.G., Eidman, V.R.: Factors associated with success of fuel ethanol producers. Staff Paper Series P03-7. University of Minnesota, USA. 54 pp. (2003)Google Scholar
  21. 21.
    Sanchez, O.J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270–5295 (2008)CrossRefGoogle Scholar
  22. 22.
    Aden, A. Biochemical Production of Ethanol from Corn Stover (May 2008), 2007 State of Technology Model, Technical Report NREL/TP-510-43205 (2007)Google Scholar
  23. 23.
    Bose, M.L.V., Martins Filho, J.C.O.: Papel dos resíduos agro-industriais na alimentação de ruminantes. Informe agropecuário 10(119), 3–7 (1984)Google Scholar
  24. 24.
    Klingenfeld, D., Kennedy H.: Corn stover as a bioenergy feedstock: identifying and overcoming barriers for corn stover harvest, storage, and transport. School Policy Analysis Exercise (2008)Google Scholar
  25. 25.
    Glassner D.A., Hettenhaus J.R., Schechinger T.M.: Corn stover collection project. BioEnergy 98: Expanding BioEnergy Partnerships (1998)Google Scholar
  26. 26.
    Chen, M., Xia, L., Xue, P.: Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int. Biodeteriorat. Biodegrad. 59, 85–89 (2007)CrossRefGoogle Scholar
  27. 27.
    Chen, M., Zhao, J., Xia, L.: Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411–415 (2008)CrossRefGoogle Scholar
  28. 28.
    Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., Viikari, L.: Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40, 3519–3525 (2005)CrossRefGoogle Scholar
  29. 29.
    Selig, M.J., Knoshaug, E.P., Adney, W.S., Himmel, M.E., Decker, S.R.: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 99, 4997–5005 (2008)CrossRefGoogle Scholar
  30. 30.
    Lopez-Ulibarri, R., Hall, G.M.: Saccharification of cassava flour starch in a hollow-fiber membrane reactor. Enzyme. Microb.Technol. 21, 398–404 (1997)CrossRefGoogle Scholar
  31. 31.
    Sriroth, K., Lamchaiyaphum, B., Piyachomkwan, K.: Present situation and future potential of cassava in Thailand. http://www.cassava.org/doc/presentsituation2.pdf (2007)
  32. 32.
    Dai, D., Hu, Z., Pu, G., Li, H., Wang, C.: Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers. Manag. 47, 1686–1699 (2006)CrossRefGoogle Scholar
  33. 33.
    Raupp, D.S., Moreira, S.S., Banzatto, D.A., Sgarbieri, V.C.: Composition, physiological and nutritive properties of an insoluble high fiber flour obtained from cassava fibrous waste - Ciência e Tecnologia de Alimentos 19(2), (1999)Google Scholar
  34. 34.
    Sriroth, K., Chollakup, R., Chotineeranat, S., Piyachomkwan, K., Oates, C.G.: Processing of cassava waste for improved biomass utilization. Bioresour. Technol. 71, 63–69 (2000)CrossRefGoogle Scholar
  35. 35.
    Bon, E. P.S., Monteiro Jr., N.: Hidrólise de amido por processo fermentativo para a produção de xaropes de glicose. Revista de Propriedade Industrial nº 1744- 08 de junho de 2004. Patent number: PI0204544-3Google Scholar
  36. 36.
    Akpan, I., Uraih, N., Obuekwe, C.O., Ikenebomeh, M.J.: Production of ethanol from cassava waste. Acta Biotechnol. 8, 39–45 (2004)CrossRefGoogle Scholar
  37. 37.
    Empresa Brasileira de Pesquisa Agropecuária www.embrapa.br
  38. 38.
    Pandey, C.A., Soccol, C.R., Nigam, P., Soccol, V.T., Vandenberghe, L.P.S., Mohan, R.: Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour. Technol. 74, 81–87 (2000)CrossRefGoogle Scholar
  39. 39.
    Bramorski, A., Soccol, C.R., Christen, P., Revah, S.: Fruity aroma production by Ceratocystis fimbriata in solid cultures from agro-industrial wastes. Rev. Microbiol. 29(3), 208–212 (1998)CrossRefGoogle Scholar
  40. 40.
    Medeiros, B.P.A.: Production and composition of aromatic volatile compounds by Kluyveromyces marxianus in solid state fermentation. Master’s Thesis, Federal University of Parana, Curitiba, Brazil (1998)Google Scholar
  41. 41.
    Soccol, C.R., Stertz, S.C., Raimbault, M., Pinheiro, L.I.: Biotransformation of solid waste from cassava starch production by Rhizopus in solid state fermentation, 2. Optimization of the culture conditions and growth kinetics. Arch. Biol. Technol. 38, 1311–1318 (1995)Google Scholar
  42. 42.
    Beux, M.R., Soccol, C.R., Marin, B., Tonial, T., Roussos, S.: Cultivation of Lentinus edodes on the mixture of cassava bagasse and sugarcane bagasse. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (eds.) Advances in Solid State Fermentation, pp. 499–511. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  43. 43.
    Barbosa, M.C.S., Soccol, C.R., Marin, B., Todeschini, M.L., Tonial, T., Flores, V.: Prospect for production of Pleurotus sajor-caju from cassava fibrous waste. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (eds.) Advances in Solid State Fermentation, pp. 513–525. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  44. 44.
    Kolicheski, M.B., Soccol, C.R., Marin, B., Medeiros, E., Raimbault, M.: Citric acid production on three cellulosic supports in solid state fermentation. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (eds.) Advances in Solid State Fermentation, pp. 447–460. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  45. 45.
    Shankaranand, V.S., Lonsane, B.K.: Citric acid by solid state fermentation a case study for commercial exploitation. In: Pandey, A. (ed.) Solid state fermentation, pp. 149–152. Wiley Eastern, New Delhi, India (1994)Google Scholar
  46. 46.
    Vandenberghe, L.P.S., Soccol, C.R., Pandey, A., Lebeault, J.M.: Solid state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technol. (in press)Google Scholar
  47. 47.
    Vandenberghe, L.P.S, Soccol, C.R., Carta, F.S., Lebeault, J.-M., Milcent, P.F., Machado, L.: Enzymatic hydrolysis of liquid and solid wastes of cassava root industry for production of metabolites by fermentation. COBEQ 98, Porto Alegre, Brazil (1998)Google Scholar
  48. 48.
    Carta, F.S., Soccol, C.R., Machado, L., Machado, C.M.M.: Prospect of using cassava bagasse waste for producing fumaric acid. J. Sci. Ind. Res. 57(10–11), 644–649 (1998)Google Scholar
  49. 49.
    Carta, F.S., Soccol, C.R., Ramos, L.P., Fontana, J.D.: Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresour. Technol. 68, 23–28 (1999)CrossRefGoogle Scholar
  50. 50.
    Vandenberghe, L.P.S., Soccol, C.R., Lebeault, J.M., Krieger, N.: Cassava wastes hydrolysate an alternative carbon source for citric acid production by Candida lipolytica. Paper presented in Int. Congr. Biotech. 98, Portugal (1998)Google Scholar
  51. 51.
    Abia, A.A., Horsfall Jr, M.: Didi O.: The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresour. Technol. 90, 345–348 (2003)CrossRefGoogle Scholar
  52. 52.
    United States Department of Agriculture USDA. www.ers.usda.gov/briefing/wheat/trade.htm
  53. 53.
  54. 54.
    Companhia Nacional de Abastecimento. www.conab.gov.br. October 2009
  55. 55.
    Palmarola-Adrados, B., Chotěborská, P., Galbe, M., Zacchi, G.: Ethanol production from non-starch carbohydrates of wheat bran. Bioresour. Technol. 96(7), 843–850 (2005)CrossRefGoogle Scholar
  56. 56.
    www.raisis.ind.br. Accessed October 2009
  57. 57.
    Bampidis, V.A., Robinson, P.H.: Citrus by-products as ruminant feeds: a review. Animal Feed Sci. Technol. 128, 175–217 (2006)CrossRefGoogle Scholar
  58. 58.
    Marín, F.R., Soler-Rivas, C., Benavente-García, O., Castillo, J., Pérez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100, 736–741 (2007)CrossRefGoogle Scholar
  59. 59.
    Stewart, D., Widmer, W., Grohmann, K., Wilkins, M.: Ethanol production from solid citrus processing wastes. http://www.faqs.org/patents/app/20080213849#ixzz0VAljqu3F. Accessed October 2009
  60. 60.
    Van Heerden, I., Cronjé, C., Swart, S.H., Kotzé, J.M.: Microbial, chemical and physical aspects of citrus waste composting. Bioresour. Technol. 81, 71–76 (2002)CrossRefGoogle Scholar
  61. 61.
    Tripodo, M.M., Lanuzza, F., Micali, G., Coppolino, R., Nucita, F.: Citrus waste recovery: a new environmentally friendly procedure to obtain animal feed. Bioresour. Technol. 91, 111–115 (2004)CrossRefGoogle Scholar
  62. 62.
    Duetz, W.A., Bouwmeester, H., Van Beilen, J.B., Witholt, B.: Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl. Microbiol. Biotechnol. 61, 269–277 (2003)Google Scholar
  63. 63.
    Ferrara, M.A., Lacerda, P.S.B., Freitas, A., Almeida, D.S., Bon, E.P.S.: Limonene bioconversion by Yarrowia lipolytica. In: 14th European Congress on Biotechnology, Barcelona. New Biotechnology, 2009. v. 25S. p. 124 (2009)Google Scholar
  64. 64.
    Wilkins, M.R., Widmer, W.W., Grohmann, K., Cameron, R.G.: Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour. Technol. 98, 1596–1601 (2007)CrossRefGoogle Scholar
  65. 65.
    Centro de debate y market place de biocombustibles. CCe. http://www.biodieselspain.com/2008/11/27/primera-planta-del-mundo-que-fabrica-etanol-con-residuos-citricos/. Accessed October 2009
  66. 66.
    Tools for saving our planet togheter. http://www.supergreenme.com/go-green-environment-eco:Ethanol-from-Citrus-Waste. Accessed October 2009)
  67. 67.
    Bezerra, F.C., ROSA, M.F.: Utilização do pó da casca de coco verde como substrato agrícola para produção de mudas de alface. Comunicado Técnico 71. Embrapa. Fortaleza (2002)Google Scholar
  68. 68.
    Carrijo, O.A., Liz, R.S. de, Makishima, N.: Fibra de casca de coco verde como substrato agrícola. Horticultura Brasileira.Brasília.v20, n.04. Dez. pp. 533–535 (2002)Google Scholar
  69. 69.
    Deflor. Soluções ambientais definitivas. Cátalago de produtos e serviços.2006.34p[S.I,s.n]Google Scholar
  70. 70.
    Ferreira, J.M.S., Warwick, D.R.N, Siqueira, L.A.: A Cultura do coqueiro no Brasil. 2 ed. Brasília. Embrapa. 292 pp. (1988)Google Scholar
  71. 71.
    Leite, S.G.F., Rosa, M.F., Furtado, A.A.L.: Aproveitamento dos resíduos agroindustriais: produção de enzimas a partir da casca de coco verde. Boletim CEPPA 19(1), 33–42 (2001). CuritibaGoogle Scholar
  72. 72.
    Ministério da Agricultura, Pecuária e Abastecimento: Coco Produção. Frutas do Brasil. Embrapa. Brasília,106 pc. (2003)Google Scholar
  73. 73.
    Jank, L., do Valle, C.B., Carvalho, P., de, F.: New grasses and legumes: advances and perspectives for the tropical zones of Latin America. In: Reynolds, S.G., Frame, J. (eds.) FAO 2005 Grasslands: Developments, Opportunities, Perspectives, pp. 55–79. Science Publishers, Inc, Plymouth, UK (2005)Google Scholar
  74. 74.
    Andrade, J.B. Subprojeto: Produção de Biomassa pelo Capim Elefante. Área: Energia – Fontes Alternativas – Biomassa Rede Proposta: PIB – Projeto Integrado Biomassa Proponente: Instituto de Zootécnica Interessado: FINEP/RECOPE. Junho/(1997)Google Scholar
  75. 75.
    Carvalho, L.A.: Pennisetum purpureum, Shumacher – revisão. Coronel Pacheco: Embrapa–Gado de Leite, 1985, 86 pp. (Boletim técnico, 10)Google Scholar
  76. 76.
    Mazzarella, V. Fuel alternative: Brazil to produce power from grass—July 24, 2007 http://news.mongabay.com/bioenergy/2007/10/brazilian-scientists-identify-elephant.html
  77. 77.
    Stambuk, B.U., Eleutherio, E.C.A., Flores-Pardo, L.M., Maior, A.M.S., Bon, E.P.S.: Brazilian potencial for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains. J. Sci. Ind. Res. 67, 918–926 (2008)Google Scholar
  78. 78.
    Brito, E.O.: Estimativa da produção de resíduos na indústria brasileira de serraria e laminação de madeira. Revista da Madeira 4, 34–39 (1995)Google Scholar
  79. 79.
    Chalico, T.A.: Feedstock production in Latin America. Biofuels assessment on technical opportunities and research needs for Latin America. BioTop Project No: FP7-213320. January 2009Google Scholar
  80. 80.
    O verdadeiro portal do biodiesel. Potencial energético do biodiesel. http://www.biodieselbr.com/energia/residuo/index.htm. Accessed October 2009
  81. 81.
    Duff, S.J.B., Murray, W.D.: Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55, 1–33 (1996)CrossRefGoogle Scholar
  82. 82.
    Champagne, P.: Feasibility of producing bio-ethanol from waste residues: a Canadian perspective. Feasibility of producing bio-ethanol from waste residues in Canada Resources. Conserv. Recycling 50, 211–230 (2007)CrossRefGoogle Scholar
  83. 83.
    The saab network. Sweden leads european bioethanol market. http://www.saabnet.com/tsn/press/060509B.html. Accessed October 2009
  84. 84.
  85. 85.
    União da Indústria de cana-de-açúcar. www.unica.com.br

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Viridiana Ferreira-Leitão
    • 1
  • Leda Maria Fortes Gottschalk
    • 2
  • Maria Antonieta Ferrara
    • 3
  • Alexandre Lima Nepomuceno
    • 4
  • Hugo Bruno Correa Molinari
    • 5
  • Elba P. S. Bon
    • 2
    Email author
  1. 1.National Institute of Technology/INT, Ministry of Science and TechnologyRio de JaneiroBrazil
  2. 2.Chemistry Institute, Federal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Far-Manguinhos – FIOCRUZRio de JaneiroBrazil
  4. 4.Embrapa SojaLondrinaBrazil
  5. 5.Embrapa AgroenergiaBrasíliaBrazil

Personalised recommendations