Advertisement

Improvement of oscillation characteristics of ring oscillator through photoconductivity and dielectric constant of photorefractive materials

  • M. K. MauryaEmail author
Original Paper
  • 4 Downloads

Abstract

The intensity of oscillation and the oscillation frequency shift are two most important parameters that characterize the performance of a photorefractive ring oscillator. In this paper, the effect of photoconductivity and dielectric constant of photorefractive (PR) materials on these parameters has been studied in case of non-degenerate two-wave mixing in PR materials. It has been found that for a given value of photoconductivity of PR material, the highly reflecting (\( R > 90\% \)) cavity mirrors are much effective parameter as compared to the other parameters (frequency detuning, absorption strength, energy beam coupling strength and dielectric constant) for the enhancement of the intensity of oscillation in the oscillator. Also, the magnitude of oscillation frequency of the photorefractive ring oscillator (PRO) can be increased by inserting PR crystal of lower dielectric constant (\( \varepsilon < 7.0 \)), higher photoconductivity (\( \sigma_{\text{p}} > 500\,{\text{pS/cm}} \)) and highly reflectivity (\( R > 90\% \)) cavity mirrors provided that the cavity-length detuning \( \left( {\frac{\Delta \varGamma }{\pi } > 1.0} \right) \) of the oscillator is higher. This means that the intensity and frequency of the PRO could be controlled by the dielectric constant and photoconductivity of a PR crystal which would greatly improve performance of a PRO and their applications based on these photorefractive ring oscillators such as wave front color conversion, optical limiting, optical computing and beam cleanup.

Keywords

Ring oscillator Photoconductivity Dielectric constant of the photorefractive materials 

PACS Nos.

42.50.-p 42.65.Hw 42.65-k 

Notes

References

  1. [1]
    P Gunter Nonlinear optical effects and materials (New York: Springer) (2000)CrossRefGoogle Scholar
  2. [2]
    M K Maurya, T K Yadav and R A Yadav Opt. Laser Technol.42 465 (2010)ADSCrossRefGoogle Scholar
  3. [3]
    M C Golomb, B Fischer, J White and A Yariv IEEE J. Quantum Electron.20 12 (1984)ADSCrossRefGoogle Scholar
  4. [4]
    R Singh, M K Maurya, T K Yadav, D P Singh and R A Yadav Opt. Laser Technol.43 95 (2011).ADSCrossRefGoogle Scholar
  5. [5]
    P Yeh Appl. Opt.23 2974 (1984)ADSCrossRefGoogle Scholar
  6. [6]
    M K Maurya and R A Yadav Opt. Laser Technol.47 10 (2013)ADSCrossRefGoogle Scholar
  7. [7]
    J E Heebner and R W Boyd Opt. Lett.24 847 (1999)ADSCrossRefGoogle Scholar
  8. [8]
    M K Maurya and R A Yadav Opt. Laser Technol.44 55 (2012)Google Scholar
  9. [9]
    K Zhan, C Hou and S Pu Opt. Laser Technol.43 1274 (2011)ADSCrossRefGoogle Scholar
  10. [10]
    M K Maurya J. Sci. Res. Adv.2 84 (2015)Google Scholar
  11. [11]
    B I Sturman and V M Fridkin The photovoltaic and photorefractive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers) (1992)Google Scholar
  12. [12]
    M K Maurya, T K Yadav, D Yadav and R A Yadav Opt. Laser Technol.43 1041 (2011)ADSCrossRefGoogle Scholar
  13. [13]
    D M Lininger, P J Martin and D Z Anderson Opt. Lett.14 697 (1989)ADSCrossRefGoogle Scholar
  14. [14]
    M K Maurya and R A Yadav Opt. Laser Technol.44 1191 (2012)ADSCrossRefGoogle Scholar
  15. [15]
    P Gunter and J P Huignard Topics in applied physics, vols. 61 and 62 (Berlin: Springer) (1988, 1989)Google Scholar
  16. [16]
    M K Maurya, T K Yadav, R Singh, R A Yadav and D P Singh Opt. Commun.283 2416 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    N V Kukhtarev, V B Markov, S G Odulov, M S Soskin and V L Vintskii Ferroelectrics22 949 (1979)Google Scholar
  18. [18]
    A M Glass (1978) Opt. Eng.17 470ADSCrossRefGoogle Scholar
  19. [19]
    M K Maurya and R A Yadav Opt. Laser Technol.42 883(2010)ADSCrossRefGoogle Scholar
  20. [20]
    V Belinitcher and B Sturman Sov. Phys. Uspekhi23 199 (1980)ADSCrossRefGoogle Scholar
  21. [21]
    Z Guoquan and G Ru Chin. Phys. Lett.12 617 (1995)CrossRefGoogle Scholar
  22. [22]
    M K Maurya and R A Yadav Opt. Commun.283 2615 (2010)ADSCrossRefGoogle Scholar
  23. [23]
    M K Maurya, T K Yadav and R A Yadav Opt. Laser Technol.42 775 (2010)ADSCrossRefGoogle Scholar
  24. [24]
    C Benkert and D Z Anderson. Phy. Rev.A44 4633 (1991)ADSCrossRefGoogle Scholar
  25. [25]
    M K Maurya, T K Yadav and R A Yadav Pramana-J. Phys.72 709 (2009)ADSCrossRefGoogle Scholar
  26. [26]
    M K Maurya and R A Yadav Optik123 1260 (2012)ADSCrossRefGoogle Scholar
  27. [27]
    M Carrascosa, J M Cabrera, F Agullo-Lopez IEEE J. Quantum Electron.27 509 (1991)ADSCrossRefGoogle Scholar
  28. [28]
    P Yeh Optical waves in layered media (New York: Wiley) (1988)Google Scholar
  29. [29]
    A Yariv and P Yeh Optical waves in Crystal (New York: Wiley) (1984)Google Scholar
  30. [30]
    P Yeh, JOSA B2 1924 (1985)ADSCrossRefGoogle Scholar
  31. [31]
    R A Ganeev, A I Ryasnyansky, R I Tugushev, M K Kodirov, F R Akhmedjanov and T Usmanov Opt. Quantum Electron.36 807 (2004)CrossRefGoogle Scholar
  32. [32]
    N Katyala, A Royb, and A Kapoora, Optik122 207 (2011)ADSCrossRefGoogle Scholar
  33. [33]
    D Nesheva, Z Aneva and M Gospodinov, J. Phys. Chem. Solids 54 857 (1993)ADSCrossRefGoogle Scholar
  34. [34]
    L Mosquera, I de Oliveira, J Frejlich, A C Hernandes and S Lanfredi and J F Carvalho J. Appl. Phys.90 2635 (2001)ADSCrossRefGoogle Scholar
  35. [35]
    D Nesheva, Z Aneva, and Z Levi J. Phys. Chem. Solids 54 889 (1994)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of PhysicsRajeev Gandhi Government P.G. CollegeAmbikapurIndia

Personalised recommendations