First-principles calculations to investigate structural and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys

  • Amal Moussali
  • Mahdad Benzardjab Amina
  • Benattou Fassi
  • Ibrahim Ameri
  • Mohammed Ameri
  • Y. Al-DouriEmail author
Original Paper


Structural, electronic, elastic and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys based on rare earth element have been investigated using full-potential linear muffin-tin orbital (FP-LMTO) method within generalized gradient approximation (GGA) in the frame of density functional theory (DFT). By using total energy variations, the independent elastic constants and their pressure dependence have been determined. Also, anisotropic parameter (A), shear modulus (G), Young modulus (E), Poisson’s ratio (ν), ratio (B/G) are calculated. Using quasi-harmonic Debye model, thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys are investigated in temperature range 0–1200 K and pressure range 0–50 GPa. The temperature and pressure effects on the unit cell volume, bulk modulus (B), heat capacities (Cv) at stable volume, (Cp), Debye temperatures (θD), Gibbs energies (G), thermal expansion coefficients (α) and entropies (S) are determined from non-equilibrium Gibbs functions. This study allows to understand deeply the structural and thermodynamic properties of Ni2LaZ (Z = As, Sb and Bi) Heusler alloys in shortest time and cost-effective.


FP-LMTO Heusler alloys GGA Structural Thermodynamic 


31.15.E 61.66.Dk 71.15.Mb 03.75.Hh 67.40.Kh 



  1. [1]
    F Heusler (1903) Verhandlungen der DeutschenPhysikalischen Gesellschaft5 219Google Scholar
  2. [2]
    H H Potter Proc. Phys. Soc.41 135 (1929)ADSCrossRefGoogle Scholar
  3. [3]
    A J Bradley and J W Rodgers Proc. R. Soc. A144 340 (1934)ADSCrossRefGoogle Scholar
  4. [4]
    S Ishida, Y Kubo, J Ishida and S Asano J. Phys. Soc. Jpn.48 814 (1980)ADSCrossRefGoogle Scholar
  5. [5]
    S Ishida, J Ishida, S Asano and J Yamashita J. Phys. Soc. Jpn.45 1239 (1978)ADSCrossRefGoogle Scholar
  6. [6]
    J Kuebler, A R Williams and C B Sommers Phys. Rev. B28 1745 (1983)ADSCrossRefGoogle Scholar
  7. [7]
    R A de Groot, F M Mueller, P G van Engen and K H J Buschow Phys. Rev. Lett.50 2024 (1983)ADSCrossRefGoogle Scholar
  8. [8]
    S Savrasov and D Savrasov Phys. Rev. B46 12181 (1992)ADSCrossRefGoogle Scholar
  9. [9]
    S Y Savrasov Phys. Rev. B54 16470 (1996)ADSCrossRefGoogle Scholar
  10. [10]
    S Y Savrasov Zeitschrift für Kristallographie220 555 (2005)ADSGoogle Scholar
  11. [11]
    J P Perdew and Y Wang Phys. Rev. B46 12947 (1992)ADSCrossRefGoogle Scholar
  12. [12]
    P E Blöchl, O Jepsen and O K Andersen Phys. Rev. B49 16223 (1994)ADSCrossRefGoogle Scholar
  13. [13]
    M Belkhouane et al J. Magn. Magn. Mater.377 211 (2015)ADSCrossRefGoogle Scholar
  14. [14]
    F Dahmaneet et al J. Magn. Magn. Mater.407 167 (2016)ADSCrossRefGoogle Scholar
  15. [15]
    F D Murnaghan Proc. Natl. Acad. Sci.30 5390 (1944)Google Scholar
  16. [16]
    E Schreiber, OL Anderson and N Soga Elastic Constants and their Measurement (New York: McGraw-Hill) (1973)Google Scholar
  17. [17]
    M J Mehl Phys. Rev. B47 2493 (1993)ADSCrossRefGoogle Scholar
  18. [18]
    T Lantri, S Bentata and B Bouadjemi J. Magn. Magn. Mater.419 74 (2016)ADSCrossRefGoogle Scholar
  19. [19]
    A Akriche et al J. Magn. Magn. Mater.422 13 (2017)ADSCrossRefGoogle Scholar
  20. [20]
    A Abada and K Amara J. Magn. Magn. Mater.388 59 (2015)ADSCrossRefGoogle Scholar
  21. [21]
    F Khelfaoui, M Ameri, D Bensaid, I Ameri and Y Al-Douri J. Supercond. Novel Magn.31 3183 (2018)CrossRefGoogle Scholar
  22. [22]
    Y Nakanishi et al J. Phys. Soc. Jpn.71 249 (2002)CrossRefGoogle Scholar
  23. [23]
    M Born and K Huang Dynamical Theory of Crystal Lattices (Clarendon: Oxford) (1956)zbMATHGoogle Scholar
  24. [24]
    B Mayer, H Anton and E Bott et al Intermetallics11 23 (2003)CrossRefGoogle Scholar
  25. [25]
    H Fu, D Li, F Peng, T Gao and X Cheng Comput. Mater. Sci.44 774 (2008)CrossRefGoogle Scholar
  26. [26]
    C H Jenkins and S K Khanna Mech. Mater.12 62 (2005)Google Scholar
  27. [27]
    X H Hou, X J Xu, J M Meng, Y B Ma and Z C Deng Compos. Part B Eng.162 411 (2019)CrossRefGoogle Scholar
  28. [28]
    S F Pugh Lond. Edinb. Dublin Philos. Mag. J. Sci.45 823 (1954)CrossRefGoogle Scholar
  29. [29]
    M A Blanco, E Francisco and V Luaña Comput. Phys. Commun.158 57 (2004)ADSCrossRefGoogle Scholar
  30. [30]
    M A Blanco, A Martin Pendas, E Francisco, JM Recio and R Franco J. Mol. Struct.368 245 (1996)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Amal Moussali
    • 1
  • Mahdad Benzardjab Amina
    • 1
  • Benattou Fassi
    • 2
  • Ibrahim Ameri
    • 3
  • Mohammed Ameri
    • 1
    • 3
  • Y. Al-Douri
    • 4
    • 5
    • 6
    Email author
  1. 1.Laboratory of Physical Chemistry of Advanced MaterialsUniversity of Djillali LiabesSid Bel AbbesAlgeria
  2. 2.Telecommunications and Digital Signal Processing Laboratory, Faculty of Electrical EngineeringUniversity of Djillali LiabesSidi Bel AbbesAlgeria
  3. 3.Physics Department, Faculty of ScienceUniversity of Sidi Bel AbbesSidi Bel AbbesAlgeria
  4. 4.University Research Center, Cihan University SulaimaniyaSulaimaniyaIraq
  5. 5.Nanotechnology and Catalysis Research Center (NANOCAT), University of MalayaKuala LumpurMalaysia
  6. 6.Department of Mechatronics Engineering, Faculty of Engineering and Natural SciencesBahcesehir UniversityBesiktas, IstanbulTurkey

Personalised recommendations