Advertisement

Dyonic solutions of Maxwell field equations in arbitrary media

  • Ila JoshiEmail author
  • Jivan Singh Garia
Original Paper
  • 10 Downloads

Abstract

In this paper, we report the reformulation of Maxwell equations for dyon in arbitrary media and it’s role in order to obtain the three set of solutions in terms of charge density \(\rho\), current density J, polarization P, and magnetization M. Present study determines the electric field E, electric displacement vector D, magnetic induction vector H, and magnetic field B as integrals of retarded charge density \(\rho\), current density J, polarization P and magnetization M, and their retarded spatial and temporal derivatives.

Keywords

Dyon Monopole Polarization Magnetization 

PACS Nos.

14.80Hv 

Notes

Acknowledgements

We are grateful to the reviewers for valuable comments that helped us to improve this manuscript.

References

  1. [1]
    P A M Dirac Phys. Rev. 74 8179 (1948)CrossRefGoogle Scholar
  2. [2]
    P A M Dirac Proc. Roy. Soc. (London) A133 60 (1931)ADSCrossRefGoogle Scholar
  3. [3]
    J Schwinger Phys. Rev. 144 1087 (1966)ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    D Zwanziger Phys. Rev. 176 1489 (1968)ADSCrossRefGoogle Scholar
  5. [5]
    W V R Malkus Phys. Rev. 83 899 (1951)ADSCrossRefGoogle Scholar
  6. [6]
    E Goto, H M Kolm and K W Ford Phys. Rev. 132 387 (1963)ADSCrossRefGoogle Scholar
  7. [7]
    L D Faddeev Methods in field theory: FRONT MATTER Les Houches lecture, session 20, North Holland (1976)Google Scholar
  8. [8]
    S Coleman The uses of instantons Lectures delivered at the Int. school of Subnuclear Phys (1975)Google Scholar
  9. [9]
    D Zwanziger Phys. Rev. 137 647 (1965)ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    N Cabibbo and E Ferrari Nuovo Cim 23 1147 (1962)ADSCrossRefGoogle Scholar
  11. [11]
    G Hooft Nucl. Phys. B 138 1 (1978)ADSCrossRefGoogle Scholar
  12. [12]
    A M Polyakov JETP Lett. 20 194 (1974)ADSGoogle Scholar
  13. [13]
    B Julia and A Zee Phys. Rev. D 11 2227 (1975)ADSCrossRefGoogle Scholar
  14. [14]
    C Dokos and T Tomaros Phys. Rev. D 21 2940 (1980)ADSCrossRefGoogle Scholar
  15. [15]
    J Prekill Annu. Rev. Nucl. Part. Sci. 34 461 (1984)ADSCrossRefGoogle Scholar
  16. [16]
    C G Callen Phys. Rev. D 25 2141 (1982)ADSCrossRefGoogle Scholar
  17. [17]
    V A Rubakov Nucl. Phys. B 203 211 (1982)CrossRefGoogle Scholar
  18. [18]
    S Mandelstam Phys. Rev. D 19 249 (1976)Google Scholar
  19. [19]
    G Hooft Nucl. Phys. B 136 1 (1978)CrossRefGoogle Scholar
  20. [20]
    B S Rajput J. Math. Phys. 25 351 (1984)ADSCrossRefGoogle Scholar
  21. [21]
    B S Rajput and R Gunwant Ind. J. Pure Appl. Phys. 26 538 (1988)Google Scholar
  22. [22]
    E Witten Phys. Lett. B 86 283 (1979)ADSCrossRefGoogle Scholar
  23. [23]
    D J Griffiths and M A Heald Am. J. Phys. 59 111 (1991)ADSCrossRefGoogle Scholar
  24. [24]
    O D Jefimenko Am. J. Phys. 59 262506 (1992)Google Scholar
  25. [25]
    M Javid and P M Brown Field Analysis and Electromagnetics (New York: McGraw-Hill) p 63 (1963)Google Scholar
  26. [26]
    D J Griffiths Introduction of Electrodynamics (Englewood Cliffs, Englewood Cliffs, NJ: Prentice Hall) Vol 2, p 165 (1989)Google Scholar
  27. [27]
    O D Jefimenko Am. J. Phys. 40 545 (1983)ADSCrossRefGoogle Scholar
  28. [28]
    B Carrascal, G A Estevez and V Lorenzo Am. J. Phys. 59 233 (1991)ADSCrossRefGoogle Scholar
  29. [29]
    J D Jackson Classical Electrodynamics (Singapore: John Wiley) Vol 3 (1999)zbMATHGoogle Scholar
  30. [30]
    P Feynman and A R Hibbs Quantum Mechanics and Path Integrals (New York: Mc Graw-Hill) (1965)zbMATHGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of PhysicsL. S. M. Govt. Post Graduate CollegePithoragarhIndia

Personalised recommendations