Advertisement

A new truncated M-fractional derivative for air pollutant dispersion

  • A S Tankou TagneEmail author
  • J M Ema’a Ema’a
  • G H Ben-Bolie
  • D Buske
Review paper
  • 44 Downloads

Abstract

In this paper, we study the potential of fractional derivatives to model air pollution. We introduce an M-fractional truncated derivative type for \(\alpha \)-differentiable functions that generalizes other types of fractional derivatives. We denote this new differential operator by \(_{i}D_{\mathrm{M}}^{\alpha ,\beta }\), where the parameters \(\alpha \) and \(\beta \), associated with the order of the derivative are such that \(0<\alpha <1\), \(\beta >1\) and M is the notation to indicate that the function to be derived involves the truncated function of Mittag-Leffler with a parameter. The definition of this type of truncated M-fractional derivative satisfies the properties of the integer calculation. Based on this observation, we solved these models and we compared the solutions with the data obtained from the Copenhagen experiment. Fractional derivative models work much better than the traditional Gaussian model and the computed values are in good agreement with experimental ones.

Keywords

M-fractional derivative type Truncated Mittag-Leffler Air pollutant 

PACS Nos.

82.33.Tb 47.53.+n 92.60.Sz 

Notes

References

  1. [1]
    J P Bouchaud and A Georges Phys. Rep.195 127 (1990)ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    R Metzler and J Klafter Phys. Rep.339(1) 1 (2000)ADSCrossRefGoogle Scholar
  3. [3]
    R Herrmann Fractional calculus: An Introduction for Physicists (Singapore : World Scientific Publishing Company) p 528 (2011)CrossRefGoogle Scholar
  4. [4]
    A A Kilbas, M Srivastava and J J Trujillo Theory and Applications of Fractional Differential Equations (Amsterdam : Elsevier) 204, p 102 (2006)Google Scholar
  5. [5]
    D Kai The Analysis of Fractional Differential Equations (New York : Springer) 2004, p 77 (2004)Google Scholar
  6. [6]
    M Caputo Elasticita e Dissipazione (Bologna : Zani-Chelli) (1969)Google Scholar
  7. [7]
    J Vanterler and E C Oliveira Progr. Fract. Differ. Appl.4(4) 479 (2018)Google Scholar
  8. [8]
    C Oliveira and J A T Machado Math. Probl. Eng.2014 1 (2014)Google Scholar
  9. [9]
    R Gorenflo and A A Kilbas, F Mainardi and S V Rogosin Mittag-Leffler Functions, Related Topics and Applications (Berlin: Springer) p 39 (2014)Google Scholar
  10. [10]
    R F Camargo PhD Thesis (UNICAMP, Campinas) (2009)Google Scholar
  11. [11]
    R Gorenflo, A A Kilbas, F Mainardi and S V Rogosin Mittag-Leffler Functions, Related Topics and Applications (Berlin : Springer) (2014)Google Scholar
  12. [12]
    A Giusti Nonlinear Dyn.93(3) 1757 (2018)CrossRefGoogle Scholar
  13. [13]
    M Ortigueira and J Machado Fractal Fract.1(3) 1 (2017)Google Scholar
  14. [14]
    M Ortigueira and J A T Machado J. Comput. Phys.293 4 (2015)ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    D Del-Castillo-Negrete Phys. Rev. E. Stat. Nonlinear Soft Matter Phys.79 031120 (2009)ADSCrossRefGoogle Scholar
  16. [16]
    K S Miller and B Ross An Introduction to the Fractional Calculus and Fractional Differential Equations (New York : Wiley) 1, p 257 (1993)Google Scholar
  17. [17]
    K B Oldham and J Spanier The Fractional Calculus (New York : Academic Press) 111, p 96 (1974)Google Scholar
  18. [18]
    S G Samko, A A Kilbas and O I Marichev Fractional Integrals and Derivatives - Theory and Applications (Yverdon : Gordon and Beach) 1, Ch 5, Sec 24, p 457 (1993)Google Scholar
  19. [19]
    I Podlubny J. Fract. Calc. Appl. Anal. 5(4) 367 (2002)MathSciNetGoogle Scholar
  20. [20]
    M A M Ghandehari and M RanjbarKhaled Comput. Math. Appl.65 975 (2013)MathSciNetCrossRefGoogle Scholar
  21. [21]
    R J LeVeque Finite Difference Methods for Differential Equations (Washington : A Math) Sec 15, p 201 (2004)Google Scholar
  22. [22]
    B Ross A Brief History and Exposition of the Fundamental Theory of Fractional Calculus (Berlin : Frac. Calc. and its Appl.) p 5 (1975)Google Scholar
  23. [23]
    A G O Goulart, M J Lazo, J M S Suarez and D M Moreira Phys. A Stat. Mech. Appl.477 9 (2017)Google Scholar
  24. [24]
    S M Khaled Essa, F Mubarak and A Abo Bakr World Appl. Sci. J.34(10) 1399 (2016)Google Scholar
  25. [25]
    J Sabatier and C Farges J. Comput. Appl. Math.339 30 (2018)MathSciNetCrossRefGoogle Scholar
  26. [26]
    M D Ortigueira and F J Coito Comput. Math. Appl.59 1782 (2010)MathSciNetCrossRefGoogle Scholar
  27. [27]
    S P Arya Proc. Indian Natl. Sci. Acad.69A(6) 709 (2003)Google Scholar
  28. [28]
    P Kumar and M Sharan Proc. R. Soc.A466 383 (2010)ADSCrossRefGoogle Scholar
  29. [29]
    Y Luchko Math. Model. Nat. Phenom.11(3) 1 (2016)MathSciNetCrossRefGoogle Scholar
  30. [30]
    K H Hoffmann, K Kulmus, C Essex and J Prehl Entropy20 881 (2018)ADSCrossRefGoogle Scholar
  31. [31]
    F Mainardi Appl. Math. Lett.9(6) 23 (1996)MathSciNetCrossRefGoogle Scholar
  32. [32]
    G A Briggs Diffusion Estimation for Small Emissions (Tennessee : NOAA Oak Ridge) p 12 (1973)Google Scholar
  33. [33]
    S E Gryning and E Lyck J. Clim. Appl. Meteorol.23 651 (1984)ADSCrossRefGoogle Scholar
  34. [34]
    W M Cox and J Tikvart Atmos. Environ.24A(9) 2387 (1990)ADSCrossRefGoogle Scholar
  35. [35]
    M Sharan and P Kumar Atmos. Environ. 43 2268 (2009)ADSCrossRefGoogle Scholar
  36. [36]
    S E Gryning, A A M Holtslag, Atmos. Environ.21 79 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • A S Tankou Tagne
    • 1
    • 2
    Email author
  • J M Ema’a Ema’a
    • 4
  • G H Ben-Bolie
    • 1
    • 2
  • D Buske
    • 3
  1. 1.Laboratory of Nuclear Physics, Department of Physics, Faculty of ScienceUniversity of Yaounde IYaoundéCameroon
  2. 2.The African Center of Excellence in Information and Communication TechnologiesUniversity of Yaounde IYaoundéCameroon
  3. 3.Laboratory of Pollutant Dispersion Modelling and Nuclear Engineering, Department of Mathematics and Statistics, Institute of Physics and MathematicsFederal University of PelotasPelotasBrasil
  4. 4.Higher Teachers’ Training CollegeUniversity of MarouaMarouaCameroon

Personalised recommendations