A new truncated M-fractional derivative for air pollutant dispersion
- 44 Downloads
Abstract
In this paper, we study the potential of fractional derivatives to model air pollution. We introduce an M-fractional truncated derivative type for \(\alpha \)-differentiable functions that generalizes other types of fractional derivatives. We denote this new differential operator by \(_{i}D_{\mathrm{M}}^{\alpha ,\beta }\), where the parameters \(\alpha \) and \(\beta \), associated with the order of the derivative are such that \(0<\alpha <1\), \(\beta >1\) and M is the notation to indicate that the function to be derived involves the truncated function of Mittag-Leffler with a parameter. The definition of this type of truncated M-fractional derivative satisfies the properties of the integer calculation. Based on this observation, we solved these models and we compared the solutions with the data obtained from the Copenhagen experiment. Fractional derivative models work much better than the traditional Gaussian model and the computed values are in good agreement with experimental ones.
Keywords
M-fractional derivative type Truncated Mittag-Leffler Air pollutantPACS Nos.
82.33.Tb 47.53.+n 92.60.SzNotes
References
- [1]J P Bouchaud and A Georges Phys. Rep.195 127 (1990)ADSMathSciNetCrossRefGoogle Scholar
- [2]R Metzler and J Klafter Phys. Rep.339(1) 1 (2000)ADSCrossRefGoogle Scholar
- [3]R Herrmann Fractional calculus: An Introduction for Physicists (Singapore : World Scientific Publishing Company) p 528 (2011)CrossRefGoogle Scholar
- [4]A A Kilbas, M Srivastava and J J Trujillo Theory and Applications of Fractional Differential Equations (Amsterdam : Elsevier) 204, p 102 (2006)Google Scholar
- [5]D Kai The Analysis of Fractional Differential Equations (New York : Springer) 2004, p 77 (2004)Google Scholar
- [6]M Caputo Elasticita e Dissipazione (Bologna : Zani-Chelli) (1969)Google Scholar
- [7]J Vanterler and E C Oliveira Progr. Fract. Differ. Appl.4(4) 479 (2018)Google Scholar
- [8]C Oliveira and J A T Machado Math. Probl. Eng.2014 1 (2014)Google Scholar
- [9]R Gorenflo and A A Kilbas, F Mainardi and S V Rogosin Mittag-Leffler Functions, Related Topics and Applications (Berlin: Springer) p 39 (2014)Google Scholar
- [10]R F Camargo PhD Thesis (UNICAMP, Campinas) (2009)Google Scholar
- [11]R Gorenflo, A A Kilbas, F Mainardi and S V Rogosin Mittag-Leffler Functions, Related Topics and Applications (Berlin : Springer) (2014)Google Scholar
- [12]A Giusti Nonlinear Dyn.93(3) 1757 (2018)CrossRefGoogle Scholar
- [13]M Ortigueira and J Machado Fractal Fract.1(3) 1 (2017)Google Scholar
- [14]M Ortigueira and J A T Machado J. Comput. Phys.293 4 (2015)ADSMathSciNetCrossRefGoogle Scholar
- [15]D Del-Castillo-Negrete Phys. Rev. E. Stat. Nonlinear Soft Matter Phys.79 031120 (2009)ADSCrossRefGoogle Scholar
- [16]K S Miller and B Ross An Introduction to the Fractional Calculus and Fractional Differential Equations (New York : Wiley) 1, p 257 (1993)Google Scholar
- [17]K B Oldham and J Spanier The Fractional Calculus (New York : Academic Press) 111, p 96 (1974)Google Scholar
- [18]S G Samko, A A Kilbas and O I Marichev Fractional Integrals and Derivatives - Theory and Applications (Yverdon : Gordon and Beach) 1, Ch 5, Sec 24, p 457 (1993)Google Scholar
- [19]I Podlubny J. Fract. Calc. Appl. Anal. 5(4) 367 (2002)MathSciNetGoogle Scholar
- [20]M A M Ghandehari and M RanjbarKhaled Comput. Math. Appl.65 975 (2013)MathSciNetCrossRefGoogle Scholar
- [21]R J LeVeque Finite Difference Methods for Differential Equations (Washington : A Math) Sec 15, p 201 (2004)Google Scholar
- [22]B Ross A Brief History and Exposition of the Fundamental Theory of Fractional Calculus (Berlin : Frac. Calc. and its Appl.) p 5 (1975)Google Scholar
- [23]A G O Goulart, M J Lazo, J M S Suarez and D M Moreira Phys. A Stat. Mech. Appl.477 9 (2017)Google Scholar
- [24]S M Khaled Essa, F Mubarak and A Abo Bakr World Appl. Sci. J.34(10) 1399 (2016)Google Scholar
- [25]J Sabatier and C Farges J. Comput. Appl. Math.339 30 (2018)MathSciNetCrossRefGoogle Scholar
- [26]M D Ortigueira and F J Coito Comput. Math. Appl.59 1782 (2010)MathSciNetCrossRefGoogle Scholar
- [27]S P Arya Proc. Indian Natl. Sci. Acad.69A(6) 709 (2003)Google Scholar
- [28]P Kumar and M Sharan Proc. R. Soc.A466 383 (2010)ADSCrossRefGoogle Scholar
- [29]Y Luchko Math. Model. Nat. Phenom.11(3) 1 (2016)MathSciNetCrossRefGoogle Scholar
- [30]K H Hoffmann, K Kulmus, C Essex and J Prehl Entropy20 881 (2018)ADSCrossRefGoogle Scholar
- [31]F Mainardi Appl. Math. Lett.9(6) 23 (1996)MathSciNetCrossRefGoogle Scholar
- [32]G A Briggs Diffusion Estimation for Small Emissions (Tennessee : NOAA Oak Ridge) p 12 (1973)Google Scholar
- [33]S E Gryning and E Lyck J. Clim. Appl. Meteorol.23 651 (1984)ADSCrossRefGoogle Scholar
- [34]W M Cox and J Tikvart Atmos. Environ.24A(9) 2387 (1990)ADSCrossRefGoogle Scholar
- [35]M Sharan and P Kumar Atmos. Environ. 43 2268 (2009)ADSCrossRefGoogle Scholar
- [36]S E Gryning, A A M Holtslag, Atmos. Environ.21 79 (1987)ADSCrossRefGoogle Scholar