Advertisement

Implementation of atomic fast population transfer in separate cavities via shortcut to adiabatic passage

  • Si-Yang HaoEmail author
  • Si-Le Lin
  • Chun-Ling Zhang
Original Paper
  • 10 Downloads

Abstract

Based on the invariant-based inverse engineering and quantum Zeno dynamics, we design time-dependent resonant laser pulses to speed up the population transfer in two spatially separated \(\Lambda \)-type atoms. Through designing a virtual dark state for the evolution of the system, we can rapidly achieve a perfect population transfer in an ordinary cavity quantum electrodynamics system. We also discuss the influence of decoherence by numerical computation, and the result proves that this method is insensitive to the cavity decay and atomic spontaneous dissipation. In addition, this method is robust against the amplitude fluctuations of most of the parameters.

Keywords

Fast population transfer Invariant-based inverse engineering Separate cavities 

PACS Nos.

03.67. Pp 03.67. Mn 03.67. HK 

Notes

Acknowledgements

This work was financially supported by the funding (Funding Number: JT180723) from the Fujian Education Department

References

  1. [1]
    M Lu, Y Xia, J Song and H S Song J. Phys. B 46, 15502 (2013)CrossRefGoogle Scholar
  2. [2]
    S Y Hao, Y Xia, J Song and Nguyen Ba An J. Opt. Soc. Am. B 30,468 (2013)ADSCrossRefGoogle Scholar
  3. [3]
    A Ruschhaupt, X Chen, D Alonso and J G Muga New. J. Phys. 14, 093040 (2012)ADSCrossRefGoogle Scholar
  4. [4]
    X Chen, E Torrontegui and J G Muga Phys. Rev. A 83, 062116 (2011)ADSCrossRefGoogle Scholar
  5. [5]
    A del Campo Phys. Rev. A 84, 031606 (2011)ADSCrossRefGoogle Scholar
  6. [6]
    Y H Chen, Y Xia, Q Q Chen and J Song Phys. Rev. A 91, 012325 (2015)ADSCrossRefGoogle Scholar
  7. [7]
    L B Chen, M Y Ye, G W Lin, Q H Du and X M Lin Phys. Rev. A 76, 062304 (2007)ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    B Misra and E C G Sudarshan J. Math. Phys. 18, 756 (1977)ADSCrossRefGoogle Scholar
  9. [9]
    W M Itano, D J Heinzen, J J Bollinger and D J Wineland Phys. Rev. A 41, 2295 (1990)ADSCrossRefGoogle Scholar
  10. [10]
    P Kwiat, H Weinfurter, T Herzog, A Zeilinger and M A Kasevich Phys. Rev. Lett. 74, 4763 (1995)ADSCrossRefGoogle Scholar
  11. [11]
    R J Cook Phys. Scr. T 21, 49 (1988)ADSCrossRefGoogle Scholar
  12. [12]
    P Facchi and S Pascazio Phys. Rev. Lett. 89, 080401 (2002)ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J M Raimond, M Brune and S Haroche Rev. Mod. Phys. 73, 565 (2001)ADSCrossRefGoogle Scholar
  14. [14]
    K H Song and M F Chen Quantum Inf.15, 3169 (2016)CrossRefGoogle Scholar
  15. [15]
    J Majer, J M Chow, J M Gambetta, J Koch, B R Johnson, J A Schreier, L Frunzio D I Schuster, A A Houck, A Wallraff, A Blais, M H Devoret, S M Girvin and R J Schoelkopf Nature (London) 449, 443 (2007)ADSCrossRefGoogle Scholar
  16. [16]
    H J Kimble Nature (London) 453, 1023 (2008)ADSCrossRefGoogle Scholar
  17. [17]
    S Abdel-Khalek, E M K halil and S I AIi Laser Phys.18, 135 (2008)ADSCrossRefGoogle Scholar
  18. [18]
    S Abdel-Khalek Open Syst. Inf. Dyn.22, 1550015 (2015)MathSciNetCrossRefGoogle Scholar
  19. [19]
    S Abdel-Khalek J. Russ. Laser Res. 30,146 (2009)CrossRefGoogle Scholar
  20. [20]
    W Qin, X Wang, A Miranowicz, Z Zhong and F Nori Phys. Rev. A 96, 012315 (2017)ADSCrossRefGoogle Scholar
  21. [21]
    Y H Chen, W Qin and F Nori, arXiv:1901.10249.
  22. [22]
    E Torrontegui, S Ibianez, S Martnez-Garaot, M Modugno, A. del Campo, D Gue-Odelin, A Ruschhaupt, X Chen and J G Muga Adv. At. Mol. Opt. Phys. 62, 117 (2013)ADSCrossRefGoogle Scholar
  23. [23]
    Y H Chen, Y Xia, Q Q Chen and J Song Laser phys.11, 115201 (2014)ADSCrossRefGoogle Scholar
  24. [24]
    M Demirplak and S A Rice J. Phys. Chem. A 107, 9937 (2003); J. Phys. Chem. B 109, 6838 (2005); J. Chem. Phys. 129, 15411 (2008)Google Scholar
  25. [25]
    M B Berry J. Phys. A: Math. Theor. 42, 365303 (2009)CrossRefGoogle Scholar
  26. [26]
    S Y Tseng and X Chen Opt. Lett. 37, 5118 (2012)ADSCrossRefGoogle Scholar
  27. [27]
    J F Schaff, X L Song, P Capuzzi, P Vignolo and G Labeyrie Euro. phys. Lett. 93, 23001 (2011)ADSCrossRefGoogle Scholar
  28. [28]
    A Walther, F Ziesel, T Ruster, S T Dawkins, K Ott, M Hettrich, K Singer, F Schmidt-Kaler and U Poschinger Phys. Rev. Lett. 109, 080501 (2012)ADSCrossRefGoogle Scholar
  29. [29]
    M G Bason, M Viteau, N Malossi, P Huillery, E Arimondo, D Ciampini, R Fazio, V Giovannetti, R Mannella and O Morsch Nat. Phys. 8, 147 (2012)CrossRefGoogle Scholar
  30. [30]
    R Bowler, J Gaebler, Y Lin, T R Tan, D Hanneke, J D Jost, J P Home, D Leibfried and D J Wineland Phys. Rev. Lett. 109, 080502 (2012)ADSCrossRefGoogle Scholar
  31. [31]
    X Chen and J G Muga Phys. Rev. A 86, 033405 (2012)ADSCrossRefGoogle Scholar
  32. [32]
    M A Sillanpaa, J I Park and R W Simmonds Nature (London)449, 438 (2007)ADSCrossRefGoogle Scholar
  33. [33]
    M Lu, Y Xia, L T Shen and J Song Laser Phys. 24, 105201 (2014)ADSCrossRefGoogle Scholar
  34. [34]
    Y H Chen, Y Xia, Q Q Chen and J Song Phys. Rev. A 89, 033856 (2014)ADSCrossRefGoogle Scholar
  35. [35]
    Y H Chen, Y Xia, Q Q Chen and J Song Sci. Rep. 5, 15616 (2015)ADSCrossRefGoogle Scholar
  36. [36]
    X Chen, A Ruschhaupt, S Schmidt, A D Campo, D Gury-Odelin and J G Muga Phys. Rev. Lett. 104, 063002 (2010)ADSCrossRefGoogle Scholar
  37. [37]
    Y H Chen, Y Xia, Q C Wu, H B Huang and J song Phys. Rev. A 95, 052109 (2016)ADSCrossRefGoogle Scholar
  38. [38]
    J F Schaff, P Capuzzi, G Labeyrie and P Vignolo New J. Phys. 13, 113017 (2011)ADSCrossRefGoogle Scholar
  39. [39]
    H R Lewis and W B Riesenfeld J. Math. Phys.10, 1458 (1969)ADSCrossRefGoogle Scholar
  40. [40]
    A Serafini, S Mancini and S Bose Phys. Rev. Lett.96, 010503 (2006)ADSCrossRefGoogle Scholar
  41. [41]
    T Pellizzari Phys. Rev. Lett.79, 26 (1997)CrossRefGoogle Scholar
  42. [42]
    Z C Shi, Y Xia, J Song and H S Song J. Opt. Soc. Am. B28, 2909 (2013)ADSCrossRefGoogle Scholar
  43. [43]
    S B Zheng Eur. Phys. J. D54 719 (2009)ADSCrossRefGoogle Scholar
  44. [44]
    R X Chen and L T Shen Phys. Lett. A375 3840-3844(2001)ADSCrossRefGoogle Scholar
  45. [45]
    S M pillane, T J Kippenberg, O J Painter, and K J Vahala Phys. Rev. Lett.91, 043902 (2003)ADSCrossRefGoogle Scholar
  46. [46]
    K J Gordon, V Fernandez, P D Townsend and G S Buller IEEE. J. Quantum Electron.40, 900 (2004)ADSCrossRefGoogle Scholar
  47. [47]
    J R Buck and H J Kimble Phys. Rev. A67, 033806 (2003)ADSCrossRefGoogle Scholar
  48. [48]
    S M Spillane, T J Kippenberg, K J Vahala, K W Goh, E Wilcut and H J Kimble Phys. Rev. A 71, 013817 (2005)ADSCrossRefGoogle Scholar
  49. [49]
    S Abdel-Khalek Ann. Phys. 351, 952 (2014)ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    S Abdel-Khalek Int. J. Quantum Inf. 07,1541 (2009)CrossRefGoogle Scholar
  51. [51]
    Y H Chen, Y Xia, Q Q Chen and J Song Laser Phys. 11, 115201 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.The Center of ExperimentFujian Police CollegeFuzhouChina
  2. 2.Fujian Agriculture and Forestry UniversityFuzhouChina
  3. 3.Fujian Yango UniversityFuzhouChina

Personalised recommendations