Microwave multichannel tunable filter based on transmission and reflection properties of 1D magnetized plasma photonic crystal heterostructures

  • Suneet Kumar AwasthiEmail author
  • Ranjita Panda
  • Amit Verma
  • Prashant Kumar Chauhan
  • Laxmi Shiveshwari
Original Paper


The transmission and reflection properties of one-dimensional magnetized plasma photonic crystal heterostructures have been theoretically investigated. The proposed structure is composed of two sub-PCs containing magnetized cold plasma and lossless dielectric materials. The optical properties of the structure are suitable for multichannel tunable transmission filter and omnidirectional band-stop filters applications. The investigations have been carried out by applying transfer matrix method and employing electrostatic boundary conditions for TE and TM wave, respectively, in microwave region. The transmission spectra of the proposed structure possess external magnetic field-dependent 3N − 3 comb-like resonant peaks called as transmission channels for period number (N) > 1. Due to multiple interactions between forward and backward decaying evanescent waves in plasma and dielectric layers, respectively, 3N − 3 transmission channels are found in defect-free magnetized plasma photonic crystal heterostructure, enabling the structure to work as a multichannel filter. Next, the filter properties have been made tunable, i.e., channel frequency of each channel can either be red or blue shifted, depending upon the RHP and LHP configurations of external magnetic field under magneto-optical Faraday effect, respectively. The number of channels and their positions can also be modulated by changing the number of periods (N) and the incident angle (θ0) for TE and TM waves both besides other plasma parameters. Apart from the transmission properties of the proposed structure, we have also studied the reflection properties to obtain multichannel tunable omnidirectional photonic band gaps under the influence of external magnetic field. These results may be utilized to develop new kind of externally tunable single to multichannel omnidirectional band-stop filters.


Photonic band gap materials Magnetic field Heterostructures 


42.70.Qs 78.20.Ls 75.70.Cn 



One of the authors Dr. Suneet Kumar Awasthi would like to thank almighty for giving directions pertaining to this work. Authors are also thankful to Prof. R. S. Sirohi, Prof. S. P. Ojha and Prof. U. Malaviya for their helpful discussions required for this work.


  1. [1]
    E Yablonovitch Phys. Rev. Lett.58 2059 (1987)ADSCrossRefGoogle Scholar
  2. [2]
    X K Kong, S B Liu, H F Zhang, C Z Li and B R Bian J. Opt13 035101 (2011)ADSCrossRefGoogle Scholar
  3. [3]
    C-Z Li, S-B Liu, X-K Kong, H-F Zhang, B-R Bian and X-Y Zhang IEEE Trans. Plasma Sci.39(10) 1969 (2011)ADSCrossRefGoogle Scholar
  4. [4]
    S K Awasthi, U Malaviya and S P Ojha J. Opt. Soc. Am. B23(12) 2566 (2006)ADSCrossRefGoogle Scholar
  5. [5]
    S K Awasthi, A Srivastava, U Malaviya and S P Ojha Solid State Commun. 146 506 (2008)ADSCrossRefGoogle Scholar
  6. [6]
    L Shiveshwari and S K Awasthi Phys. Plasmas22 092129 (2015)ADSCrossRefGoogle Scholar
  7. [7]
    J Mizuguchi, Y Tanaka, S Tamura and M Notomi Phys. Rev. B67 075109 (2003)ADSCrossRefGoogle Scholar
  8. [8]
    H T Jiang, H Chen, H Q Li, Y W Zhang and S Y Zhu Appl. Phys. Lett.83 5386 (2003)ADSCrossRefGoogle Scholar
  9. [9]
    L G Wang, H Chen and S Y Zhu Phys. Rev. B70 245102 (2004)ADSCrossRefGoogle Scholar
  10. [10]
    V S C Manga Rao and S Hughes Phys. Rev. Lett.99 193901 (2007)ADSCrossRefGoogle Scholar
  11. [11]
    J S Li, L Zhou, C T Chan and P Sheng Phys. Rev. Lett.90 083901 (2003)ADSCrossRefGoogle Scholar
  12. [12]
    H T Jiang, H Chen, H Q Li, Y W Zhang, J Zi and S Y Zhu Phys. Rev. E69 066607 (2004)ADSCrossRefGoogle Scholar
  13. [13]
    O L Berman, Y E Lozovik, S L Eiderman and R D Coalson Phys. Rev. B74 092505 (2006)ADSCrossRefGoogle Scholar
  14. [14]
    H C Hung, C J Wu and S J Chang J. Appl. Phys.110 093110 (2011)ADSCrossRefGoogle Scholar
  15. [15]
    L M Li Appl. Phys. Lett. 78 3400 (2003)ADSCrossRefGoogle Scholar
  16. [16]
    Q F Dai, Y W Li and H Z Wang Appl. Phys. Lett.89 061121 (2006)ADSCrossRefGoogle Scholar
  17. [17]
    D R Solli, C F McCormick, R Y Chiao and J M Hickmann Appl. Phys. Lett.82 1036 (2003)ADSCrossRefGoogle Scholar
  18. [18]
    W F Zhang, J H Liu, W P Huang and W Zhao Opt. Lett.34 2676 (2009)ADSCrossRefGoogle Scholar
  19. [19]
    Y H Chen Opt. Express18 19920 (2010)ADSCrossRefGoogle Scholar
  20. [20]
    H Zhang and H Zhang Plasma Sci. Technol.20 105001 (2018)ADSCrossRefGoogle Scholar
  21. [21]
    S Wicharn and P Buranasiri Mater. Today Proc.05 11011 (2018)CrossRefGoogle Scholar
  22. [22]
    V Vepachedu, T G Mackay and A Lakhtakia Opt. Commu.425 58 (2018)ADSCrossRefGoogle Scholar
  23. [23]
    B Wang, F Righetti and M A Cappelli Phys. Plasmas25 031902 (2018)ADSCrossRefGoogle Scholar
  24. [24]
    S Wicharn, W Yindeesuk and P Buranasiri J. Opt. Soc. Am. B35(9) 2125 (2018)ADSCrossRefGoogle Scholar
  25. [25]
    X Wang, Y Liang, L Wu, J Guo, X Dai and Y Xiang Opt. Lett.43(17) 4256 (2018)ADSCrossRefGoogle Scholar
  26. [26]
    T W Chang, J R C Chien and C J Wu Appl. Opt.55(4) 943 (2016)ADSCrossRefGoogle Scholar
  27. [27]
    S Shukla, S Prasad and V Singh Phys. Plasmas23 092111 (2016)ADSCrossRefGoogle Scholar
  28. [28]
    C Nayak, A Aghajamali and A Saha Superlattices Microstrut.111 248 (2017)ADSCrossRefGoogle Scholar
  29. [29]
    C Nayak, A Saha and A Aghajamali Indian J. Phys.97(7) 911 (2018)ADSCrossRefGoogle Scholar
  30. [30]
    K Jamshidi-Ghaleh and F Moslemi Appl. Opt.56(14) 4146 (2017)ADSCrossRefGoogle Scholar
  31. [31]
    S K Awasthi, R Panda, P K Chauhan and L Shiveshwari Phys. Plasmas25 052103 (2018)ADSCrossRefGoogle Scholar
  32. [32]
    H-F Zhang, S-B Liu and H Yang J. Supercond. Novel Magn.27(1) 41 (2014)CrossRefGoogle Scholar
  33. [33]
    H-F Zhang, S-B Liu, H Yang and H-M Li J. Supercond. Novel Magn.26 3391 (2013)CrossRefGoogle Scholar
  34. [34]
    O El Abouti, E H El Boudouti, Y El Hassouani, A Noual and B Djafari-Rouhani Phys. Plasmas23 082115 (2016)ADSCrossRefGoogle Scholar
  35. [35]
    X K Kong, X Z Shi, J J Mo, Y T Fang, X L Chen and S B Liua Opt. Commun.383 391 (2017)ADSCrossRefGoogle Scholar
  36. [36]
    H F Zhang, XR Kong and GB Liu Solid State Commun. 292 27 (2019)ADSCrossRefGoogle Scholar
  37. [37]
    V L Ginzburg The Propagation of Electromagnetic Waves in Plasmas (Oxford, UK: Pergamon) (1970)Google Scholar
  38. [38]
    H Hojo and A Mase J. Plasma Fusion Res.80 89 (2004)ADSCrossRefGoogle Scholar
  39. [39]
    S K Awasthi, R Panda and L Shiveshwari Phys. Plasmas24 072111 (2017)ADSCrossRefGoogle Scholar
  40. [40]
    A Aghajamali, A Zare and C-J Wu Appl. Opt.54(29) 8602 (2015)ADSCrossRefGoogle Scholar
  41. [41]
    H-F Zhang, L Zeng and Y Q Chen Phys. Plasmas26 032108 (2019)ADSCrossRefGoogle Scholar
  42. [42]
    X K Kong, S B Liu, H F Zhang and C Z Li Phys. Plasmas17 103506 (2010)ADSCrossRefGoogle Scholar
  43. [43]
    S Prasad, Y Sharma, S Shukla and V Singh Phys. Plasmas23 032123 (2016)ADSCrossRefGoogle Scholar
  44. [44]
    H F Zhang, S B Liu and X K Kong Phys. Plasmas19 122103 (2012)ADSCrossRefGoogle Scholar
  45. [45]
    M Born and E Wolf “Basic Properties of the Electromagnetic Field” in Principles of Optics (UK: Cambridge University Press) pp. 1-70 (1980)Google Scholar
  46. [46]
    M R Wu, J R C Chien, C J Wu and S J Chang IEEE Photon. J.8(1) 2700309 (2016)Google Scholar
  47. [47]
    W H Lin, C J Wu, T J Yang and S J Chang Opt. Express18(26) 27155 (2010)ADSCrossRefGoogle Scholar
  48. [48]
    S Feng, J M Elson and P L Overfelt Opt. Express13(11) 4113 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Physics and Material Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Department of Physics, School of Basic Science and ResearchSharda UniversityGreater NoidaIndia
  3. 3.Department of PhysicsK.B. Womens’s CollegeHazaribaghIndia

Personalised recommendations