Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

V impurity effect on the electronic and optical properties of Ti2C graphene-like: based on DFT

  • 52 Accesses


The vanadium impurity effects on the electronic and optical properties of titanium carbide graphene-like (Ti2C:V) are investigated in the density functional theory framework to obtain the corresponding density of states, band structure, dielectric function, energy loss function, reflectivity and absorption spectrum. The electronic and optical results indicated the metallic behavior of the Ti2C and Ti2C:V nano-sheets along the graphene sheet (E||x) and the normal direction (E||z), so that the static amount of the real part of the dielectric function is big and the main large peaks of the imaginary one are located at infrared area. For Ti2C, the results of the real and imaginary parts of the dielectric function in all major peaks are due to the inter-band transitions at high energies, while radiation tends to zero. Absorption is connected to transitions between the occupied and unoccupied states of light which is a mutual effect of electrons; in other words, optical absorption is a result of inter- and intra-band transitions. On Eloss curve of both compounds, there is no energy loss for the case of zero energy, and in the case of E||x, the metallic character of the material is more than E||z case. In addition, in the highest peak in the UV region, the real part of the dielectric function is zero. Unlike the E||z case, reflectivity is almost 100% in E||x case at low energies (less than 1 eV). The increment of absorption in UV region implies the metallic character of Ti2C:V.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. [1]

    Novoselov KS and et al Nature438 197 (2005)

  2. [2]

    A Boochani, B Nowrozi, J Khodadadi, S Solaymani and S Jalali Asadabadi J. Phys. Chem. C121 3978 (2017)

  3. [3]

    H Lashgari, A Boochani, A Shekaari, S Solaymani, E Sartipi and R Taghavi Mendi Appl. Surface Sci.369 76 (2016)

  4. [4]

    M Shahrokhi, S Naderi and A Fathalian Solid State Commun.152 1012 (2012)

  5. [5]

    Q Tang and Z Zhou Progr. Mater. Sci.58 1244 (2013)

  6. [6]

    E W KeongKoh, C H Chiu, Y K Lim, Y W Zhang and H Pan I. J. Hydr. Energy37 14323 (2012)

  7. [7]

    A K M Newaz and et al Solid State Commun.155 49 (2013)

  8. [8]

    A Klein, S Tiefenbacher, V Eyert, C Pettenkofer and W Jaegermann Thin Solid Films380 221 (2000)

  9. [9]

    Y Ding, Y Wang, J Ni, L Shi, S Shi and W Tang Phys. B:Condens. Matter.406 2254 (2011)

  10. [10]

    S P Gao Solid State Commun.152 1817 (2012)

  11. [11]

    M Topsakal, E Aktürk and S Ciraci Phys. Rev. B79 115442 (2009)

  12. [12]

    I R Shein and A L Ivanovskii Comput. Mater. Sci.65 104 (2012)

  13. [13]

    I R Shein and A L Ivanovskii Superlattices Microstruct.52 147 (2012)

  14. [14]

    M W Barsoum Progr. Solid State Chem.28 201 (2000)

  15. [15]

    H Högberg and et al Surf. Coat. Technol.193 6 (2005)

  16. [16]

    M W Barsoum and T El-Raghy J. Am. Ceram. Soc.79 1953 (1996)

  17. [17]

    M Naguib and et al Adv. Mater.23 4248 (2011)

  18. [18]

    M.Naguib and et al ACS Nano6 1322 (2012)

  19. [19]

    M.Naguib and et al Electrochem. Commun.16 61 (2012)

  20. [20]

    J.Come and et al J. Electrochem. Soc159 A1368 (2012)

  21. [21]

    J X Jiang, S Jin, Z H Wang and C L Tan Phys. Lett.28 037101 (2011)

  22. [22]

    X H Wang and Y C Zhou J. Mater. Sci. Technol.26 385 (2010)

  23. [23]

    M Wu, J Guo, Y Li and Y Zhang Ceram. Int. 39 (8) 9731 (2013)

  24. [24]

    J Wang, Y Zhou, T Liao, J Zhang and Z Lin Scr. Mater.58 227 (2008)

  25. [25]

    J C Rao, Y T Pei, H J Yang, G M Song, S B Li and J T M De Hosson Acta Materialia59 5216 (2011)

  26. [26]

    S Wang, J X Li, Y L Du and C Cui Comput. Mater. Sci. 83 290 (2014)

  27. [27]

    Q Tang, Z Zhou and P Shen J. Am. Chem. Soc.134 16909 (2012)

  28. [28]

    Y Xie and et al J. Am. Chem. Soc136 6385 (2014)

  29. [29]

    A N Enyashin and A L Ivanovskii Comput. Theor. Chem. 989 27 (2012)

  30. [30]

    H Lashgari, M R Abolhassani, A Boochani, S M Elahi and J Khodadadi Solid State Commun. 195 61 (2014)

  31. [31]

    K Schwarz and P Blaha Comput. Mater. Sci.28 259 (2003)

  32. [32]

    P Blaha, K Schwarz, P Sorantin and S B Trickey Comput. Phys. Commun.59 399 (1990)

  33. [33]

    R. L. Kronig, J. Opt. Soc. Am.12 547 (1926)

  34. [34]

    P Blaha, K Schwarz, G K H Madesen, D Kvasnicka and J Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität: Wien, Austria) (2001)

Download references

Author information

Correspondence to A. Boochani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghaemmaghami, B.S.M., Boochani, A., Elahi, S.M. et al. V impurity effect on the electronic and optical properties of Ti2C graphene-like: based on DFT. Indian J Phys 94, 209–218 (2020). https://doi.org/10.1007/s12648-019-01475-x

Download citation


  • DFT
  • Ti2C:V graphene-like
  • Electronic property
  • Optical property

PACS Nos.:

  • 67.30.hm
  • 73.20.At
  • 78.20.Ci
  • 31.15.E-