Structural, electronic, magnetic and optical properties of protactinium oxides from density functional theory

  • T Liu
  • S C Li
  • T GaoEmail author
  • B Y AoEmail author
Original Paper


The structural, electronic, magnetic and optical properties of protactinium oxides (PaO and PaO2) have been studied within the framework of all-electron full potential linear augmented plane wave method of density functional theory. We apply the local spin density approximation/Perdew–Burke–Ernzerhof generalized gradient approximation (LSDA/PBE) + U with spin–orbit coupling (SOC) formalism to these compounds and compare them with the calculations of Obodo et al. (J Phys Condens Matter 25: 145603, 2013). Whereas a good agreement is obtained for PaO, our PBE and PBE + U (SOC) results differ from this study in the case antiferromagnetic (AFM) of PaO2. By choosing the Hubbard U parameter around 4.0 eV, 1.42 eV band gap for PaO2 is in good agreement with Prodan et al. (Phys. Rev. B 76: 033101, 2007). In particular, our simulations performed at PBE + U and PBE + U (SOC) levels both describe an increase in the band gap for PaO2 when increasing U. Finally, the frequency-dependent dielectric functions and optical properties of PaO2 are performed.


Protactinium oxides Electronic properties Magnetism Optical properties Density functional theory (DFT) 


71.27. + a 71.15.Mb 71.20. − b 71.30. + h 



This project was supported by the National Natural Science Foundation of China (NO. 21771167).


  1. [1]
    K T Moore and G van der Laan Rev. Modern Phys. 81 235 (2009)Google Scholar
  2. [2]
    E Manos, M Kanatzidis and J Ibers (Springer: Dordrecht The Netherlands 2010)Google Scholar
  3. [3]
    P A Sellers, S Fried, R E Elson and W Zachariasen Journal of the American Chemical Society 76 5935 (1954)CrossRefGoogle Scholar
  4. [4]
    M F Islam and A K Ray Solid State Commun. 150 938 (2010)ADSCrossRefGoogle Scholar
  5. [5]
    P Söderlind, G Kotliar, K Haule, P M Oppeneer and D Guillaumont MRS Bull. 35 883 (2010)CrossRefGoogle Scholar
  6. [6]
    A Liechtenstein, V Anisimov and J Zaanen Phys. Rev. B 52 R5467 (1995)CrossRefGoogle Scholar
  7. [7]
    S Dudarev, G Botton, S Savrasov, C Humphreys and A Sutton Phys. Rev. B 57 1505 (1998)CrossRefGoogle Scholar
  8. [8]
    I D Prodan, G E Scuseria and R L Martin Phys. Rev. B 76 033101 (2007)CrossRefGoogle Scholar
  9. [9]
    J Heyd, G E Scuseria and M Ernzerhof J. Chem. Phys. 118 8207 (2003.ADSGoogle Scholar
  10. [10]
    J Heyd and G E Scuseria J. Chem. Phys. 121 1187 (2004)ADSCrossRefGoogle Scholar
  11. [11]
    X D Wen et al. J. Chem. Phys. 137 154707 (2012)ADSCrossRefGoogle Scholar
  12. [12]
    K O Obodo and N Chetty J. Phys. Condens Matter 25 145603 (2013)ADSCrossRefGoogle Scholar
  13. [13]
    O K Andersen Phys. Rev. B 12 3060 (1975)Google Scholar
  14. [14]
    I E Gas Phys. Rev. B 136 864 (1964)Google Scholar
  15. [15]
    W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)ADSCrossRefGoogle Scholar
  16. [16]
    P Blaha, K Schwarz, G Madsen, D Kvasnicka and J Luitz An augmented plane wave + local orbitals program for calculating crystal properties 2001)Google Scholar
  17. [17]
    J P Perdew, K Burke and M Ernzerhof Phys. Rev. L 77 3865 (1996)Google Scholar
  18. [18]
    F Wooten Opt. Prop. Solids 28, 803 (1973)Google Scholar
  19. [19]
    H Shi, M Chu and P Zhang J. Nucl. Mates. 400 151 (2010)ADSCrossRefGoogle Scholar
  20. [20]
    J Schoenes Phys. Rep. 63 301 (1980)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular PhysicsSichuan UniversityChengduChina
  2. 2.School of Electronic and Communication EngineeringGuiyang UniversityGuiyangChina
  3. 3.Science and Technology on Surface Physics and Chemistry LaboratoryJiangyouChina

Personalised recommendations