Advertisement

Hidden extreme multistability generated from a fractional-order chaotic system

  • Xiang Li
  • Zhijun LiEmail author
Original Paper
  • 18 Downloads

Abstract

A new 4D fractional-order chaotic system with no equilibrium is proposed in this paper. One salient feature of this system is that it has no equilibrium point, which leads to the lack of homo-clinic or hetero-clinic trajectory. Thus, Shil’nikov theorem is not suitable to prove the existence of chaos in this system. However, the system can exhibit complex dynamic behaviors when its system parameter and fractional derivative order are varied. More interesting, the dynamics depending on initial values are also investigated and a more complex phenomenon of hidden extreme multistability is revealed. Furthermore, by selecting the appropriate system parameters, the state transition behaviors can be also found in this system. Finally, in order to verify the feasibility of the proposed fractional-order chaotic system, the corresponding physical circuit is designed by using the modular design method. The hardware experimental results are in good agreement with numerical analysis.

Keywords

Chaos Fractional dynamics Hidden extreme multistability State transition behavior Circuit implementation 

PACS Nos.

05.45.-a 05.45.Df 05.45.Pq 

Notes

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 61176032 and 61471310) and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ2142), for supporting this research.

References

  1. [1]
    D Cafagna IEEE Ind. Electron. Mag. 1 35 (2007)MathSciNetCrossRefGoogle Scholar
  2. [2]
    G Tsirimokou, C Psychalinos, A Allagui and A S Elwakil Electron. Lett. 51 1699 (2015)CrossRefGoogle Scholar
  3. [3]
    T J Freeborn, B Maundy and A S Elwakil IEEE J. Emerg. Sel. Top. Circuits Syst. 3 367 (2013)ADSCrossRefGoogle Scholar
  4. [4]
    A S Elwakil, A Allagui, B J Maundy and C Psychalinos AEU - Int. J. Electron. Commun. 70 970 (2016)CrossRefGoogle Scholar
  5. [5]
    I S Jesus and R S Barbosa AEU - Int. J. Electron. Commun. 78 54 (2017)CrossRefGoogle Scholar
  6. [6]
    S Zhang, Y Zeng and Z Li Int. J. Non. Linear. Mech. 106 1 (2018)ADSCrossRefGoogle Scholar
  7. [7]
    S Ren, S Panahi, K Rajagopal, A Akgul, V-T Pham and S Jafari Zeitschrift Für Naturforsch. A 73 239 (2018)ADSCrossRefGoogle Scholar
  8. [8]
    I Grigorenko and E Grigorenko Phys. Rev. Lett. 91 034101 (2003)ADSCrossRefGoogle Scholar
  9. [9]
    A K Golmankhaneh, R Arefi and D Baleanu Adv. Math. Phys. 2013 1 (2013)CrossRefGoogle Scholar
  10. [10]
    L Jun-Guo Chinese Phys. 15 301 (2006)ADSCrossRefGoogle Scholar
  11. [11]
    M F Tolba, A M AbdelAty, N S Soliman, L A Said, A H Madian, A T Azar and A G Radwan AEU - Int. J. Electron. Commun. 78 162 (2017)CrossRefGoogle Scholar
  12. [12]
    D K Shah, R B Chaurasiya, V A Vyawahare, K Pichhode and M D Patil AEU - Int. J. Electron. Commun. 78 245 (2017)CrossRefGoogle Scholar
  13. [13]
    E Zambrano-Serrano, E Campos-Cantón and J M Muñoz-Pacheco Nonlinear Dyn. 83 1629 (2016)CrossRefGoogle Scholar
  14. [14]
    X Zhang, Z Li and D Chang AEU - Int. J. Electron. Commun. 82 435 (2017)CrossRefGoogle Scholar
  15. [15]
    Z Wei Phys. Lett. A 376 102 (2011)ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S Jafari, J C Sprott and S M R Hashemi Golpayegani Phys. Lett. A 377 699 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G A Leonov and N V. Kuznetsov Int. J. Bifurc. Chaos 23 1330002 (2013)CrossRefGoogle Scholar
  18. [18]
    G A Leonov, N V. Kuznetsov, M A Kiseleva, E P Solovyeva and A M Zaretskiy Nonlinear Dyn. 77 277 (2014)CrossRefGoogle Scholar
  19. [19]
    G A Leonov, N V Kuznetsov and T N Mokaev Commun. Nonlinear Sci. Numer. Simul. 28 166 (2015)ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    V-T Pham, S Jafari, C Volos, T Gotthans, X Wang and D V Hoang Opt. - Int. J. Light Electron Opt. 130 365 (2017)CrossRefGoogle Scholar
  21. [21]
    X-Y Dang, C-B Li, B-C Bao and H-G Wu Chin. Phys. B 24 050503 (2015)ADSCrossRefGoogle Scholar
  22. [22]
    V-T Pham, S T Kingni, C Volos, S Jafari and T Kapitaniak AEU - Int. J. Electron. Commun. 78 220 (2017)CrossRefGoogle Scholar
  23. [23]
    P R Sharma, M D Shrimali, A Prasad, N V. Kuznetsov and G A Leonov Int. J. Bifurc. Chaos 25 1550061 (2015)CrossRefGoogle Scholar
  24. [24]
    V-T Pham, A Akgul, C Volos, S Jafari and T Kapitaniak AEU - Int. J. Electron. Commun. 78 134 (2017)CrossRefGoogle Scholar
  25. [25]
    Q Li, H Zeng and X-S Yang Nonlinear Dyn. 77 255 (2014)CrossRefGoogle Scholar
  26. [26]
    F Nazarimehr, K Rajagopal, J Kengne, S Jafari and V-T Pham Chaos, Solitons & Fractals 111 108 (2018)ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    Z Wei Phys. Lett. A 376 102 (2011)ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    H Li, X Liao and M Luo Nonlinear Dyn. 68 137 (2012)CrossRefGoogle Scholar
  29. [29]
    V-T Pham, A Ouannas, C Volos and T Kapitaniak AEU - Int. J. Electron. Commun. 86 69 (2018)CrossRefGoogle Scholar
  30. [30]
    A N Pisarchik and U Feudel Phys. Rep. 540 167 (2014)ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    P Brzeski, E Pavlovskaia, T Kapitaniak and P Perlikowski Int. J. Non. Linear. Mech. 70 20 (2015)ADSCrossRefGoogle Scholar
  32. [32]
    V-T Pham, C Volos, S Jafari and T Kapitaniak Nonlinear Dyn. 87 2001 (2017)CrossRefGoogle Scholar
  33. [33]
    P S Skardal and J G Restrepo Chaos An Interdiscip. J. Nonlinear Sci. 24 043126 (2014)CrossRefGoogle Scholar
  34. [34]
    B C Bao, H Bao, N Wang, M Chen and Q Xu Chaos, Solitons & Fractals 94 102 (2017)ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    J P Singh and B K Roy Int. J. Dyn. Control 6 529 (2018)MathSciNetCrossRefGoogle Scholar
  36. [36]
    S Jafari, A Ahmadi, A J M Khalaf, H R Abdolmohammadi, V-T Pham and F E Alsaadi AEU - Int. J. Electron. Commun. 89 131 (2018)CrossRefGoogle Scholar
  37. [37]
    S Zhang, Y Zeng, Z Li, M Wang and L Xiong Chaos An Interdiscip. J. Nonlinear Sci. 28 013113 (2018)CrossRefGoogle Scholar
  38. [38]
    S Jafari, A Ahmadi, S Panahi and K Rajagopal Chaos, Solitons & Fractals 108 182 (2018)ADSCrossRefGoogle Scholar
  39. [39]
    I Podlubny Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution, Some of Their Applications (Academic Press, Cambridge) (1998).zbMATHGoogle Scholar
  40. [40]
    X Huang, Z Zhao, Z Wang and Y Li Neurocomputing 94 13 (2012)CrossRefGoogle Scholar
  41. [41]
    S Çiçek, A Ferikoğlu and İ Pehlivan Optik (Stuttg) 127 4024 (2016)CrossRefGoogle Scholar
  42. [42]
    N Khodabakhshi, S Mansour Vaezpour and D Baleanu Fract. Calc. Appl. Anal. 17 382 (2014)MathSciNetCrossRefGoogle Scholar
  43. [43]
    X Hu, C Liu, L Liu, J Ni and Y Yao Nonlinear Dyn. 91 1541 (2018)CrossRefGoogle Scholar
  44. [44]
    S Zhang, Y Zeng and Z Li Chin. J. Phys. 56 793 (2018)CrossRefGoogle Scholar
  45. [45]
    B C Bao, Z Liu and J P Xu Electron. Lett. 46 228 (2010)CrossRefGoogle Scholar
  46. [46]
    M Borowiec, A Rysak, D N Betts, C R Bowen, H A Kim and G Litak Eur. Phys. J. Plus 129 211 (2014)CrossRefGoogle Scholar
  47. [47]
    H A Larrondo, C M González, M T Martín, A Plastino and O A Rosso Phys. A Stat. Mech. Its Appl. 356 133 (2005)ADSCrossRefGoogle Scholar
  48. [48]
    C Bandt and B Pompe Phys. Rev. Lett. 88 174102 (2002)ADSCrossRefGoogle Scholar
  49. [49]
    P P A Staniczenko, C F Lee and N S Jones Phys. Rev. E 79 011915 (2009)ADSCrossRefGoogle Scholar
  50. [50]
    Y Cao, Z Cai, E Shen, W Shen, X Chen, F Gu and T Shou J. Neurosci. Methods 159 181 (2007)CrossRefGoogle Scholar
  51. [51]
    W M Ahmad and J C Sprott Chaos, Solitons & Fractals 16 339 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.College of Information EngineeringXiangtan UniversityXiangtanChina

Personalised recommendations