Advertisement

Laser-induced damage threshold study on TiO2/SiO2 multilayer reflective coatings

  • S. KumarEmail author
  • A. Shankar
  • N. Kishore
  • C. Mukherjee
  • R. Kamparath
  • S. Thakur
OriginalPaper
  • 7 Downloads

Abstract

Laser-induced damage threshold (LIDT) is a key parameter in high power laser systems. Highly reflective mirrors are made by the combination of high index and low index dielectric thin films of materials, usually oxides, having high damage threshold. The aim of the present investigation was to study the effect of multilayers on LIDT for a combination of high and low index material films with the increase in the number of layers. Firstly, we chose a combination of relatively high damage threshold high index (H) and low index (L) oxide materials, like TiO2 and SiO2. Then, we chose five reflective samples with increasing the number of layers starting with a TiO2 single quarter wave optical thick (QWOT) layer, three-QWOT layer (HL)1H, five-QWOT layer (HL)2H, seven-all QWOT layer (HL)3H and seven-layer (HL)2H 1.6L0.4H with upper two non-quarter layers for sample preparation using electron beam deposition. It has been found that LIDT measured at 1064 nm for single layer is large (2.09 J/cm2), decreases for three layers and remains nearly constant (1.51 J/cm2) as the number of multilayers increases further. When LIDT is measured at 532 nm, LIDT of the single layer and multilayers remains almost the same. However, in case of top two layers made of non-QWOT in seven-layer design the LIDT of the samples in both the cases improved.

Keywords

Multilayer reflection mirror Laser-induced damage threshold Oxide material Refractive index Non-quarter 

PACS Nos.

42.62.Cf 

Notes

Acknowledgements

This work is supported financially by University Grant Commission, New Delhi, under Basic Science Research (BSR) fellowship. The authors thank Ashok Bhakar, RRCAT Indore and M/s Light Guide Optics for allowing us to use their deposition facility. Funding was provided by UGC-BSR (Grant No. 7-179/2007(BSR)).

References

  1. [1]
    D Ristau, M Jupen and K Starke Thin Solid Films 518 1607 (2009)ADSCrossRefGoogle Scholar
  2. [2]
    J Yao, J Ma, C Xiu, Z Fan, Y Jin, Y Zhao et al. J. Appl. Phys. 103 083103 (2008)ADSCrossRefGoogle Scholar
  3. [3]
    Y Jian, J Yun, Z Yuan, H Hong, S Jian and F Zheng Chin. Phys. Lett. 24 2606 (2007)ADSCrossRefGoogle Scholar
  4. [4]
    R M Wood Laser-induced damage of optical material Inst. Phys. 0 7503 0845 1 54 (2003)Google Scholar
  5. [5]
    J Yao, Z Fan, Y Jin, Y Zhao, H He and J Shao Thin Solid Films 516 1237 (2007)ADSCrossRefGoogle Scholar
  6. [6]
    K Yoshida and N Umemura Proc. SPIE Int. Soc. Opt. Eng. 164 3244 (1998)Google Scholar
  7. [7]
    B Stuart, M Feit, S Herman, A Rubenchik, B Shore and M Perry Phys. Rev. Lett. 74 2248 (1995)ADSCrossRefGoogle Scholar
  8. [8]
    J Yao, H Li, Z Fan, Y Tang, Y Jin, Y Zhao et al. Chin. Phys. Lett. 24 1964 (2007)ADSCrossRefGoogle Scholar
  9. [9]
    K N Rao Opt. Eng. 41 2357 (2002)ADSCrossRefGoogle Scholar
  10. [10]
    J Yao, Z Fan, H He and J Shao Chin. Opt. Lett. 5556 (2007)Google Scholar
  11. [11]
    H Jiao, T Ding and Q Zhang Opt. Express 19 4059 (2011)ADSCrossRefGoogle Scholar
  12. [12]
    S Kumar, Kamal, A Shankar, N Kishore J. Integr. Sci. Technol. 55 (2017)Google Scholar
  13. [13]
    S Chen, M Zhu, D Li, H He, Y Zhao, J Shao et al. Proc. SPIE 7842 (2010)Google Scholar
  14. [14]
    J H Apfel Appl. Opt. 16 1880 (1977)ADSCrossRefGoogle Scholar
  15. [15]
    V Conta Bachelor thesis Faculty of Precision and Micro Engineering/Engineering Physics University Munich Germany (2010)Google Scholar
  16. [16]
    J Yao, Z Fan, Y Jin, Y Zhao, H He and J Shao J. Appl. Phys. 102 063105 (2007)ADSCrossRefGoogle Scholar
  17. [17]
    A Taherniya and D Raoufi Semicond. Sci. Technol. 31 125012 (2016)ADSCrossRefGoogle Scholar
  18. [18]
    J D Paul Whiteside, J A Chininis and H K Hunt Coat. MDPI 6 35 (2016)Google Scholar
  19. [19]
    The Manual of the Reflectivity Tool, Parratt 32, ETH ZurichGoogle Scholar
  20. [20]
    C K Saw, W K Grant, J Stanford, L N Dinh LLNL-TR 680742 (2016)Google Scholar
  21. [21]
    J Tauc Mater. Res. Bull. 3 37 (2007)CrossRefGoogle Scholar
  22. [22]
    G Govindasamy, P Murugasen and S Sagadevan Mater. Res. 19 413 (2016)CrossRefGoogle Scholar
  23. [23]
  24. [24]
    Guide to using WVASE spectroscopic ellipsometry data Acquisition and Analysis software J A Woollam Co. Inc. Lincoln NE 68508Google Scholar
  25. [25]
    S Kohli, C D Rithner and P K Dorhout Rev. Sci. Instrum. 76 023906 (2005)ADSCrossRefGoogle Scholar
  26. [26]
    H Jiao, X Cheng, J Lu, G Bao, Y Liu, B Ma et al. Appl. Opt. 50 C309 (2011)CrossRefGoogle Scholar
  27. [27]
    C Xu, Y Qiang, Y Zhu, J Shao, Z Fan J. Optoelectron. Adv. Mater. 11 863 (2009)Google Scholar
  28. [28]
    H Jiao, T Ding and Q Zhang Opt. Express 19 4059 (2011)ADSCrossRefGoogle Scholar
  29. [29]
    G Abromavicius, R Buzelis, R Drazdys, A Melninkaitis and V Sirutkaitis Proc. SPIE 6720 67200Y (2007)CrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Optical Engineering Division, Department of PhysicsGJUS&THisarIndia
  2. 2.Department of PhysicsCentral University MahendergarhMahendergarhIndia
  3. 3.Advanced Laser and Optics DivisionRaja Ramanna Centre for Advanced TechnologyIndoreIndia
  4. 4.Homi Bhabha National InstituteMumbaiIndia
  5. 5.Applied Spectrocopy DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations