Advertisement

Effect of magnetic field and gravity on two-temperature thermomicrostretch elastic medium under dual-phase lag model

  • Mohamed I. A. OthmanEmail author
  • Magda E. M. Zidan
  • Ibrahim E. A. Mohamed
OriginalPaper
  • 10 Downloads

Abstract

The present paper is concerned with the propagation of plane waves in an isotropic two-temperature generalized thermomicrostretch elastic solid half-space in the context of the dual-phase lag model, Green–Lindsay and coupled theories. The governing equations are solved to show the effect of a magnetic field, the gravity and the two-temperature on the medium. The normal mode analysis is used to solve the problem to obtain the exact expressions for the displacement components, the microrotation, the normal force stress, the tangential couple stress, the temperature distribution and the conducting temperature. All quantities in the presence and absence of the magnetic field and gravity, as well as the two-temperature, are shown graphically.

Keywords

Gravity Microstretch Dual-phase lag Magnetic field Two-temperature 

PACS Nos.

44.05.+e 81.40.Jj 62.20.fq 62.20.Dc 62.40.+i 

Notes

References

  1. [1]
    M A Biot J. Appl. Phys. 27 240 (1956)ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    H W Lord and Y Shulman J. Mech. Phys. Solids 15 299 (1967)ADSCrossRefGoogle Scholar
  3. [3]
    A E Green and K A Lindsay J. Elast. 2 1 (1972)CrossRefGoogle Scholar
  4. [4]
    P J Chen and M E Gurtin J. Appl. Math. Phys. 19 614 (1968)Google Scholar
  5. [5]
    P J Chen and M E Gurtin and W O Williams J. Appl. Math. Phys. 20 107 (1969)Google Scholar
  6. [6]
    W E Warren and P J Chen Acta Mech. 16 21 (1973)CrossRefGoogle Scholar
  7. [7]
    I A Abbas, A N Abd-alla and M I A Othman Int. J. Thermophys. 32 1071 (2011)ADSCrossRefGoogle Scholar
  8. [8]
    B A Boley and I S Tolins J. Appl. Mech. 29 637 (1962)ADSCrossRefGoogle Scholar
  9. [9]
    P Puri and P M Jordan Int. J. Eng. Sci. 44 1113 (2006)CrossRefGoogle Scholar
  10. [10]
    D S Chandrasekharaiah Appl. Mech. Rev. 51 705 (1998)ADSCrossRefGoogle Scholar
  11. [11]
    R B Hetnarski and J Ignaczak J. Therm. Stress. 22 451 (1999)CrossRefGoogle Scholar
  12. [12]
    D Y Tzou ASME J. Heat Transfer 117 8 (1995)CrossRefGoogle Scholar
  13. [13]
    D Y Tzou Macro- to Microscale Heat Transfer: The Lagging Behavior (Washington, DC: Taylor and Francis (1997)Google Scholar
  14. [14]
    C Cattaneo Atti. Seminario. Mat. Fis. Univ. Modena 3 83 (1948)Google Scholar
  15. [15]
    M Marin Mecc. Acta Mech. 122 155 (1997).CrossRefGoogle Scholar
  16. [16]
    M Marin, A Oechsner, Contin. Mech. Thermodyn., 29 1365 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M Marin, G Stan, Carpathian J. Math. 29 33 (2013).MathSciNetGoogle Scholar
  18. [18]
    M I A Othman, W M Hasona and E M Abd-Elaziz Can. J. Phys. 92 148 (2014)ADSGoogle Scholar
  19. [19]
    A C Eringen Int. J. Eng. Sci. 28 1291 (1990)MathSciNetCrossRefGoogle Scholar
  20. [20]
    M I A Othman and S Y Atwa J. Comput. Theor. Nanosci. 12 2579 (2015)CrossRefGoogle Scholar
  21. [21]
    M I A Othman and E M Abd-Elaziz J. Therm. Stress. 38 1068 (2015)CrossRefGoogle Scholar
  22. [22]
    M I A Othman and E M Abd-Elaziz Microsyst. Technol. 23 4979 (2017)CrossRefGoogle Scholar
  23. [23]
    M I A Othman and E M Abd-Elaziz Results Phys. 7 4253 (2017)ADSCrossRefGoogle Scholar
  24. [24]
    M I A Othman, A Jahangir and A Nadia J. Braz. Soc. Mech. Sci. Eng. 40 332 (2018)CrossRefGoogle Scholar
  25. [25]
    M I A Othman, Y D Elmaklizi and E A A Ahmed Results Phys. 7 3361 (2017)ADSCrossRefGoogle Scholar
  26. [26]
    S M Said, Y D Elmaklizi and M I A Othman Chaos Solitons Fractals 97 75 (2017)ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    S M Said Meccanica 50 2077 (2015)MathSciNetCrossRefGoogle Scholar
  28. [28]
    S M Said J. Comput. Appl. Math. 291 142 (2016)MathSciNetCrossRefGoogle Scholar
  29. [29]
    S M Said Mult. Model. Mater. Struct. 12 362 (2016)CrossRefGoogle Scholar
  30. [30]
    M Sheikholeslami Comput. Methods Appl. Mech. Eng. 344 306 (2019)ADSCrossRefGoogle Scholar
  31. [31]
    M Sheikholeslami, S A Shehzad, Z Li and A Shafee Int. J. Heat Mass Transfer 127 614 (2018)CrossRefGoogle Scholar
  32. [32]
    M Sheikholeslami, J. Mol. Liq. 265 347 (2018)CrossRefGoogle Scholar
  33. [33]
    M Sheikholeslami, S A Shehzad, F M Abbasi and Z Li, Comput. Methods Appl. Mech. Eng. 338 491 (2018)ADSCrossRefGoogle Scholar
  34. [34]
    A C Eringen Microcontinuum Field Theories I: Foundations and Solids (New York: Springer) (1999)CrossRefzbMATHGoogle Scholar
  35. [35]
    A C Eringen Int. J. Eng. Sci. 22 113 (1984)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Mohamed I. A. Othman
    • 1
    Email author
  • Magda E. M. Zidan
    • 1
  • Ibrahim E. A. Mohamed
    • 1
  1. 1.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations