Optical model potentials for 16O + 16O elastic scattering

  • Sh. Hamada
  • Awad A. IbraheemEmail author


Angular distributions of the elastic scattering differential cross section data for the 16O + 16O nuclear system in the energy range of 75–480 MeV have been analyzed using the double-folding optical potential model. The real part of the interaction potential is derived on the basis of double folding of different models of interaction such as CDM3Y1, CDM3Y6, DDM3Y1, and BDM3Y1. The imaginary part of the potential is taken as the sum of the imaginary volume term expressed in the phenomenological Woods–Saxon squared form and a derivative Woods–Saxon surface term. Renormalization factors Nr for the various concerned interaction models are evaluated. The potential created by the BDM3Y1 model of interaction has the shallowest depth, which reflects the necessity of using higher renormalization factor. The obtained real volume integral and total reaction cross sections are calculated at different energies using the derived potentials. The obtained results are in agreement with the experimental data.


Optical model Elastic scattering Folding potential 


21.10.Jx 21.60.Cs 24.10.Eq 25.70.Hi 



The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P.1/6/40.


  1. [1]
    M P Nicoli, F Haas, R M Freeman, N Aissaoui, C Beck, A Elanique, R Nouicer, A Morsad, S Szilner, Z Basrak, M E Brandan and G R Satchler Phys. Rev . C 60 064608 (1999)ADSCrossRefGoogle Scholar
  2. [2]
    Y Kondo, Y Sugiyama, T Tomita, Y Y Amanouchi, H Ikezoe, K Ideno, S Hamada, T Sugimitsu, M Hijiya and H Fujita Phys. Lett. B 365 17 (1996)ADSCrossRefGoogle Scholar
  3. [3]
    Y Sugiyama, Y Tomita, H Ikezoe, Y Yamanouchi, K Ideno, S Hamada, T Sugimitsu, M Hijiya and Y Kondō Phys. Lett. B 312 35 (1993)ADSCrossRefGoogle Scholar
  4. [4]
    D T Khoa, W von Oertzen and H G Bohlen Phys. Rev. C 49 1652 (1994)ADSCrossRefGoogle Scholar
  5. [5]
    D T Khoa, W von Oertzen, H G Bohlen and F Nuoffer Nucl. Phys. A 672 387 (2000)ADSCrossRefGoogle Scholar
  6. [6]
    H G Bohlen, E Stiliaris, B Gebauer, W von Oertzen, M Wilpert, T Wilpert, A Ostrowski, D T Khoa, A S Demyanova, A A Ogloblin Z. Phys. A 346 189 (1993)ADSCrossRefGoogle Scholar
  7. [7]
    G Bartnitzky, A Blazevic, H G Bohlen, J M Casandjian, M Chartier, H Clement, B Gebauer, A Gillibert, T Kirchner, D T Khoa, A Lepine-Szily, W Mittig, W von Oertzen, A N Ostrowski, P Roussel-Chomaz, J Siegler, M Wilpert and T Wilpert Phys. Lett. B 365 23 (1996)ADSCrossRefGoogle Scholar
  8. [8]
    E Stiliaris, H G Bohlen, P Fröbrich, B Gebauer, D Kolbert, W von Oertzen, M Wilpert and T Wilpert Phys. Lett. B 223 291 (1989)ADSCrossRefGoogle Scholar
  9. [9]
    F Nuoffer PhD Thesis (University of Tübingen, Germany) (1999)Google Scholar
  10. [10]
    A A Ogloblin, Y A Glukhov, W H Trzaska, A S Demyanova, S A Goncharov, R Julin, S V Klebnikov, M Mutterer, M V Rozhkov, V P Rudakov, G P Tiorin, D T Khoa and G R Satchler Phys. Rev. C 62 044601 (2000)ADSCrossRefGoogle Scholar
  11. [11]
    M P Nicoli, F Haas, R M Freeman, S Szilner, Z Basrak, A Morsad, G R Satchler and M E Brandan Phys. Rev. C 61 034609 (2000)ADSCrossRefGoogle Scholar
  12. [12]
    D T Khoa, W von Oertzen, H G Bohlen, G Bartnitzky, H Clement, Y Sugiyama, B Gebauer, A N Ostrowski, T Wilpert, M Wilpert and C Langner Phys. Rev. Lett. 74 34 (1995)ADSCrossRefGoogle Scholar
  13. [13]
    S Hamada, N Burtebayev and N Amangeldi Int. J. Mod. Phys. E 22 1350058 (2013)ADSCrossRefGoogle Scholar
  14. [14]
    S Szilner, M P Nicoli, Z Basrak, R M Freeman, F Haas, A Morsad, M E Brandan and G R Satchler Phys. Rev. C 64 064614 (2001)ADSCrossRefGoogle Scholar
  15. [15]
    I Gontchar and M V Chushnyakova Comput. Phys. Commun. 181 168 (2010)ADSCrossRefGoogle Scholar
  16. [16]
    D T Khoa, G R Satchler and W von Oertzen Phys. Rev. C 56 954 (1997)ADSCrossRefGoogle Scholar
  17. [17]
    S Qing-biao, F Da-chun and Z Yi-zhong Phys. Rev. C 43 2773 (1991)ADSCrossRefGoogle Scholar
  18. [18]
    M A Hassanain, Awad A Ibraheem, S M M Al Sebiey, S R Mokhtar, M A Zaki, Z M M Mahmoud, K O Behairy and M El-Azab Farid Phys. Rev. C 87 064606 (2013)Google Scholar
  19. [19]
    M A Hassanain Braz. J. Phys. 44 895 (2014)ADSCrossRefGoogle Scholar
  20. [20]
    M Rahmat and M Modarres Phys. Rev. C 97 034611 (2018)ADSCrossRefGoogle Scholar
  21. [21]
    I J Thompson Comput. Phys. Rep. 7 167 (1988)ADSCrossRefGoogle Scholar
  22. [22]
    S Kox, A Gamp, C Perrin, J Arvieux, R Bertholet, J F Bruandet, M Buenerd, R Cherkaoui, A J Cole, Y El-Masri, N Longequeue, J Menet, F Merchez and J. B. Viano Phys. Rev. C 35 1678 (1987)ADSCrossRefGoogle Scholar
  23. [23]
    R E Warner, F Carstoiu, J A Brown, F D Becchetti, D A Roberts, B Davids, A Galonsky, R M Ronningen, M Steiner, M Horoi, J J Kolata, A Nadasen, C Samanta, J Schwartzenberg and K Subotic Phys. Rev. C 74 014605 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Faculty of ScienceTanta UniversityTantaEgypt
  2. 2.Physics DepartmentKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Physics DepartmentAl-Azhar UniversityAssiutEgypt

Personalised recommendations