Advertisement

Study of optical and thermal properties of terbium manganate nanoparticles

  • Monalisa Halder
  • Amit Kumar Das
  • Ajit Kumar MeikapEmail author
OriginalPaper
  • 15 Downloads

Abstract

We have studied the optical and thermal properties of terbium manganate (TbMnO3) nanoparticles at room temperature. The sample is successfully synthesized by sol–gel method. An orthorhombic phase of the sample is confirmed from XRD analysis. The Williamson–Hall analysis is done to study the contribution of strain and crystallite size on the peak broadening of the synthesized nanoparticles. Elemental analysis of the sample is evaluated from the EDX profile. TbMnO3 nanoparticles exhibit strong absorption in the UV region. The optical band gap is calculated using the Tauc method from UV–Vis absorption spectroscopic analysis. Urbach energy is found to be 0.28 eV for the existence of band distortion and defects in the material. Thermal behaviour of these nanoparticles is determined by non-isothermal thermogravimetric analysis at inert atmosphere. The effect of different heating rates (10, 12, 15 and 20 K/min) on thermal properties of the sample is also investigated. The kinetic parameters are evaluated using different model-free methods in the analysis of solid-state kinetics for thermal behaviour of TbMnO3 nanoparticles. The Coats–Redfern method is used here to determine the apparent reaction order which is found to be ~ 2.

Keywords

Nanostructures Terbium manganate Optical properties Thermal properties 

PACS Nos.

81.20.Fw 78.67.Bf 81.70.Pg 65.80.-g 

Notes

Acknowledgements

The authors acknowledge DST-SERB (Grant No. EMR/2016/001409), Govt. of India, for financial support during this work. MH also acknowledges DST-INSPIRE for providing scholarship during her work.

References

  1. [1]
    G J Lin, H Yang, T Xian, Z Q Wei, J L Jiang and W J Feng Adv. Powder Technol. 23 35 (2012)CrossRefGoogle Scholar
  2. [2]
    J L Izquierdo, A Astudillo, G Bolaños, V H Zapata and O Morán Ceram. Int. 41 1285 (2015)CrossRefGoogle Scholar
  3. [3]
    C Zhang, H Yan, X Wan, D Kang, L Li, X Lu and J Zhu Mater. Lett. 111 147 (2013)CrossRefGoogle Scholar
  4. [4]
    V Cuartero, J Blasco, J A Rodríguez-Velamazán, J García, G Subías and C Ritter Solid State Sci. 21 37 (2013)ADSCrossRefGoogle Scholar
  5. [5]
    Y Cui, L Zhang, G Xie and R Wang Solid State Commun. 138 481 (2006)ADSCrossRefGoogle Scholar
  6. [6]
    S Kharrazi, D C Kundaliya, S W Gosavi, S K Kulkarni, T Venkatesan, S B Ogale, J Urban, S Park and S W Cheong Solid State Commun. 138 377 (2006)CrossRefGoogle Scholar
  7. [7]
    M Staruch, L Kuna, A McDannald and M Jain J. Magn. Magn. Mater. 377 117 (2015)ADSCrossRefGoogle Scholar
  8. [8]
    N P Kumar and P V Reddy Mater. Lett. 132 82 (2014)CrossRefGoogle Scholar
  9. [9]
    X An, J Deng, J Chen and X Xing Mater. Res. Bull. 48 4984 (2013)CrossRefGoogle Scholar
  10. [10]
    R A M Gotardo, F L Zabotto, D Garcia, J A Eiras, G S Dias, L F Cótica, I A Santos and A A Coelho Scripta Mater. 68 293 (2013)CrossRefGoogle Scholar
  11. [11]
    S A Acharya, S M Khule and V M Gaikwad Mater. Res. Bull. 67 111 (2015)CrossRefGoogle Scholar
  12. [12]
    T Thongtem, S Kungwankunakorn, B Kuntalue, A Phuruangrat and S Thongtem J. Alloys Compd. 506 475 (2010)CrossRefGoogle Scholar
  13. [13]
    Z K Liu, Y J Qi and C J Lu J. Mater. Sci. Mater. Electron. 21 380 (2010)ADSCrossRefGoogle Scholar
  14. [14]
    P Lin, S Cui, X Zen, H Huang and S Ke J. Alloys Compd. 600 118 (2014)CrossRefGoogle Scholar
  15. [15]
    R D Kumar, R Thangappan and R Jayavel Optik 138 365 (2017)ADSCrossRefGoogle Scholar
  16. [16]
    E Mansfield Modelling, Characterization, and Production of Nanomaterials (Cambridge: Woodhead Publishing) Ch 6, p 167 (2015)Google Scholar
  17. [17]
    A Khawam and D R Flanagan J. Phys. Chem. B 109 10073 (2005)CrossRefGoogle Scholar
  18. [18]
    I E Akerblom, D O Ojwang, J Grins and G Svensson J. Therm. Anal. Calorim. 129 721 (2017)CrossRefGoogle Scholar
  19. [19]
    B J Prakash, K N Kumar and S Buddhudu Ferroelectrics Lett. 39 104 (2012)CrossRefGoogle Scholar
  20. [20]
    L B Vedmid, A M Yankin, V F Balakirev and O M Fedorova Glass Phys. Chem. 41 244 (2015)CrossRefGoogle Scholar
  21. [21]
    T Atsumi, T Ohgushi and N Kamegashira J. Alloys Compd. 238 35 (1996)CrossRefGoogle Scholar
  22. [22]
    L B Vedmid, A M Yankin, O M Fedorova and V F Balakirev Russ. J. Phys. Chem. A 83 575 (2009)CrossRefGoogle Scholar
  23. [23]
    K Slopiecka, P Bartocci and F Fantozzi Appl. Energy 97 491 (2012)CrossRefGoogle Scholar
  24. [24]
    A Verma and P Mondal J. Energy Resour. Technol. 138 1 (2016)Google Scholar
  25. [25]
    V Leroy, D Cancellieri, E Leoni and J L Rossi Thermochim Acta 497 1 (2010)CrossRefGoogle Scholar
  26. [26]
    M Heydari, M Rahman and R Gupta Int. J. Chem. Eng. 2015 1 (2015)CrossRefGoogle Scholar
  27. [27]
    F Yao, Q Wu, Y Lei, W Guo and Y Xu Polym. Degrad. Stab. 93 90 (2008)CrossRefGoogle Scholar
  28. [28]
    B Jansi Rani, M Ravina, G Ravi, S Ravichandran, V Ganesh and RYuvakkumar Surf. Interface 11 28 (2018)Google Scholar
  29. [29]
    A L Patterson Phys. Rev. 56 978 (1939)ADSCrossRefGoogle Scholar
  30. [30]
    W S Choi, D G Kim, S S A Seo, S J Moon, D Lee, J H Lee, H S Lee, D Y Cho, Y S Lee, P Murugavel, J Yu and T W Noh Phys. Rev. B 77 045137 (2008)ADSCrossRefGoogle Scholar
  31. [31]
    J S Lee, Y S Lee, T W Noh, K Char, J Park, S J Oh, J H Park, C B Eom, T Takeda and R Kanno Phys. Rev. B 64 245107 (2001)ADSCrossRefGoogle Scholar
  32. [32]
    A S Hassanien and A A Akl Superlattices Microstruct. 89 153 (2016)ADSCrossRefGoogle Scholar
  33. [33]
    D Mekam, S Kacimi, M Djermouni, M Azzouz and A Zaoui Results Phys. 2 156 (2012)ADSCrossRefGoogle Scholar
  34. [34]
    A Layek, B Manna and A Chowdhury Chem. Phys. Lett. 539 133 (2012)ADSCrossRefGoogle Scholar
  35. [35]
    I Hamberg, C G Granqvist, K F Berggren, B E Sernelius and L Engström Phys. Rev. B 30 3240 (1984)CrossRefGoogle Scholar
  36. [36]
    W Bai, Y Q Gao, J Y Zhu, X J Meng, T Lin, J Yang, Z Q Zhu and J H Chu J. Appl. Phys. 109 064901 (2011)ADSCrossRefGoogle Scholar
  37. [37]
    M Y Guida and A Hannioui Int. J. Sci. Eng. Res. 7 193 (2016)Google Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  • Monalisa Halder
    • 1
  • Amit Kumar Das
    • 1
  • Ajit Kumar Meikap
    • 1
    Email author
  1. 1.Department of PhysicsNational Institute of TechnologyDurgapurIndia

Personalised recommendations