Indian Journal of Physics

, Volume 93, Issue 12, pp 1611–1618 | Cite as

A new study on (n, p) cross sections in nuclear interactions of neutrons with dysprosium

  • M. YiğitEmail author
  • E. Tel
  • İ. H. Sarpün
Original Paper


Neutron-induced nuclear reaction cross section data on dysprosium (Dy) target material are needed for the development and design of reactors, because of using Dy such as an absorbing material for the control rods in reactors. Furthermore, these data are important in terms of improving the definition of neutron–particle interaction. In this framework, the excitation functions of 156,158,160–164Dy(n, p)156,158,160–164Tb reactions were theoretically calculated using TALYS 1.8 and EMPIRE 3.2 Malta nuclear reaction codes. In addition, effects of different level density models on the reaction cross sections were also investigated. Therefore, the obtained theoretical cross sections are compared with the experimental cross sections found in the literature. Besides, (n, p) cross section systematics, which was proposed in our previous article and in the literature, has been used for obtaining the reaction cross sections at energies of around 14 MeV.


Dysprosium EMPIRE code Neutron-induced reaction (n, p) systematic 





  1. [1]
    B Lalremruata, S D Dhole, S Ganesan and V N Bhoraskar Nucl. Phys. A821 23 (2009)ADSCrossRefGoogle Scholar
  2. [2]
    V K Mulik et al. J. Radioanal. Nucl. Chem.296 132 (2013)CrossRefGoogle Scholar
  3. [3]
    S Yuan, Y Song, F Zhou, Y Li, M Tian and C Lan Nucl. Instrum. Methods Phys. Res. B349 130 (2015)ADSCrossRefGoogle Scholar
  4. [4]
    F Tarkanyi, F Ditroi, S Takacs, J Csikai, A Hermanne and A V Ignatyuk Appl. Radiat. Isot.83 18 (2014)CrossRefGoogle Scholar
  5. [5]
    J Luo, X Wang, Z Liu, F Tuo and X Kong Appl. Radiat. Isot.67 1892 (2009)CrossRefGoogle Scholar
  6. [6]
    R Senkov and V Zelevinsky Phys. Rev. C93 064304 (2016)ADSCrossRefGoogle Scholar
  7. [7]
    M Yiğit and E Tel Nucl. Eng. Des.280 37 (2014)CrossRefGoogle Scholar
  8. [8]
    M Yiğit and E Tel J. Radioanal. Nucl. Chem.306 203 (2015)CrossRefGoogle Scholar
  9. [9]
    M Yiğit and E Tel J. Fusion Energy35 585 (2016)CrossRefGoogle Scholar
  10. [10]
    M Yiğit Appl. Radiat. Isot.135 115 (2018)CrossRefGoogle Scholar
  11. [11]
    S J Ait-Tahar J. Phys. G13 121 (1987)ADSCrossRefGoogle Scholar
  12. [12]
    T R Siddik J. Fusion Energy34 746 (2015)CrossRefGoogle Scholar
  13. [13]
    C Konno, Y Ikeda, K Osihi, K Kawade, H Yamamoto and H Maekawa JAERI Rep. No. 1329, Japan Atomic Energy Research Institute, Tokyo, Japan (1993)Google Scholar
  14. [14]
    M U Khandaker, S K I Ali, H A Kassim and N Yusof Radiat. Phys. Chem.140 51 (2017)CrossRefGoogle Scholar
  15. [15]
    V N Levkovskii JETP Sov. Phys.18 213 (1964)Google Scholar
  16. [16]
    M Yiğit J. Fusion Energy34 1392 (2015)CrossRefGoogle Scholar
  17. [17]
    M Yiğit and A Kara Nucl. Eng. Technol.49 996 (2017)CrossRefGoogle Scholar
  18. [18]
    M Yiğit Appl. Radiat. Isot.130 109 (2017)CrossRefGoogle Scholar
  19. [19]
    J Luo, F Tuo, F Zhou and X Kong Nucl. Instrum. Methods Phys. Res. B266 4862 (2008)ADSCrossRefGoogle Scholar
  20. [20]
    M Yiğit, E Tel and İ H Sarpun Nucl. Instrum. Methods Phys. Res. B385 59 (2016)ADSCrossRefGoogle Scholar
  21. [21]
    M Yiğit and A Kara J. Radioanal. Nucl. Chem.314 2383 (2017)CrossRefGoogle Scholar
  22. [22]
    M Herman et al. EMPIRE-3.2 Malta code. (2013)
  23. [23]
    J J Griffin Phys. Rev. Lett.17 478 (1966)ADSCrossRefGoogle Scholar
  24. [24]
    C K Cline Nucl. Phys. A193 417 (1972)ADSCrossRefGoogle Scholar
  25. [25]
    I Ribansky, P Oblozhinsky and E Betak Nucl. Phys. A205 545 (1973)ADSCrossRefGoogle Scholar
  26. [26]
    A J Koning, S Hilaire and S Goriely Talys-1.8 code. (2015)
  27. [27]
    W Dilg, W Schantl, H Vonach and M Uhl Nucl. Phys. A217 269 (1973)ADSCrossRefGoogle Scholar
  28. [28]
    A Gilbert and A G W Cameron Can. J. Phys.43 1446 (1965)ADSCrossRefGoogle Scholar
  29. [29]
    A V Ignatyuk, K K Istekov and G N Smirenkin Sov. J. Nucl. Phys.29 450 (1979)Google Scholar
  30. [30]
    A D’Arrigo, G Giardina, M Herman, A V Ignatyuk and A Taccone J. Phys. G20 365 (1994)ADSCrossRefGoogle Scholar
  31. [31]
    Y Kasugai, Y Ikeda, H Yamamoto and K Kawade Ann. Nucl. Energy23 1429 (1996)CrossRefGoogle Scholar
  32. [32]
    F I Habbani and K T Osman Appl. Radiat. Isot.54 283 (2001)CrossRefGoogle Scholar
  33. [33]
    E Tel, B Şarer, Ş Okuducu, A Aydın and G Tanır J. Phys. G29 2169 (2003)ADSCrossRefGoogle Scholar
  34. [34]
    R Doczi, V Semkova, A D Majdeddin, C M Buczko and J Csikai INDC(HUN)-032, IAEA-NDS, Vienna, Austria (1997)Google Scholar
  35. [35]
    N Dzysiuk, A Kadenko, I Kadenko and G Primenko Phys. Rev. C86 034609 (2012)ADSCrossRefGoogle Scholar
  36. [36]
    Y Ikeda, C Konno, A Kumar and Y Kasugai IAEA Nucl. Data Section report to the I.N.D.C. No. 342, p. 19 (1996)Google Scholar
  37. [37]
    X Kong, Y Wang and J Yang Appl. Radiat. Isot.49 1529 (1998)CrossRefGoogle Scholar
  38. [38]
    H Sakane, T Lida, A Takahashi, H Yamamoto and K Kawade Conf. on Nucl. Data for Sci. and Techn., Trieste, 1619 (1997)Google Scholar
  39. [39]
    R G Wille and R W Fink Phys. Rev.118 242 (1960)ADSCrossRefGoogle Scholar
  40. [40]
    S M Qaim Radiochem. Radioanal. Lett.25 335 (1976)Google Scholar
  41. [41]
    A Antov, E Dobreva, I Ephtimov, N Nenoff and N Stancheva Bulg. J. Phys.10 601 (1983)Google Scholar
  42. [42]
    L A Oms, J M Palms, PV Rao, R E Wood and R W Fink Bull. Am. Phys. Soc.13 1699 (1968)Google Scholar
  43. [43]
    Y Kasugai, Y Ikeda and Y Uno Conf. on Nucl. Data for Sci. and Techn., Trieste, 1635 (1997)Google Scholar
  44. [44]
    J Luo, Z Feng, LAn, L Jiang and L He Rad. Phys. Chem.123 109 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Physics DepartmentAksaray UniversityAksarayTurkey
  2. 2.Physics DepartmentOsmaniye Korkut Ata UniversityOsmaniyeTurkey
  3. 3.Physics DepartmentAkdeniz UniversityAntalyaTurkey

Personalised recommendations