Advertisement

Stochastic resonance in an underdamped periodic potential system with symmetric trichotomous noise

  • Qianqian Qi
  • Bingchang ZhouEmail author
Original Paper
  • 5 Downloads

Abstract

Stochastic resonance (SR) is investigated in an underdamped periodic potential system subject to cosine signal with symmetric trichotomous noise measured by using the average input energy per period \(\langle \overline{W} \rangle\) numerically. The results show that: (1) The curve of \(\langle \overline{W} \rangle\) has the peak value as a function of trichotomous noise intensity \(D\) in a domain parameter, that is, SR can occur in the system; (2) SR can be enhanced by increasing signal amplitude \(A\), trichotomous noise amplitude \(a\) and stationary probability \(q\) and can be weakened by increasing asymmetric coefficient \(\alpha\); and (3) the peak value of \(\langle \overline{W} \rangle\) first increases and then decreases with the increase in friction coefficient \(\gamma\). However, the peak value of \(\langle \overline{W} \rangle\) decreases at first and then increases with the increase in signal frequency \(\omega\).

Keywords

Stochastic resonance Underdamped periodic potential system Trichotomous noise Stochastic energetics 

PACS Nos.

05.40.-a 02.50.-r 

Notes

Acknowledgements

The authors would like to thank Khursheed Yousuf War of Northwestern Polytechnical University, China, for valuable discussions, as well as the anonymous reviewers for their helpful constructive comments that significantly improved the original version of this article. Bingchang Zhou’s contribution was supported by Shaanxi Natural Science Foundation of China (Grant No. 2017JM1038) and National Natural Science Foundation of China (Grant No. 11102155).

References

  1. [1]
    R Benzi, A Sutera and A Vulpiani J. Phys. A Math. Gen. 14 L453 (1981)ADSCrossRefGoogle Scholar
  2. [2]
    B McNamara and K Wiesenfeld Phys. Rev. A 39 4854 (1989)ADSCrossRefGoogle Scholar
  3. [3]
    M I Dykman, R Mannella, P V E McClintock, S M Soskin and N G Stocks Phys. Rev. A 42 7041 (1990)ADSCrossRefGoogle Scholar
  4. [4]
    Y Xu, J Wu, L Du and H Yang Chaos Soliton Fract. 92 91 (2016)ADSCrossRefGoogle Scholar
  5. [5]
    Y Xu, J Z Ma, H Y Wang, Y G Li and J Kurths Eur. Phys. J. B 90 194 (2017)ADSGoogle Scholar
  6. [6]
    J Wu, Y Xu, H Y Wang and J Kurths Chaos 27 063105 (2017)ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A Crisanti, M Falcioni, G Paladin and A Vulpiani J. Phys. A Math. Gen. 27 L597 (1994)ADSCrossRefGoogle Scholar
  8. [8]
    P Jung Phys. Rev. E 50 2513 (1994)ADSCrossRefGoogle Scholar
  9. [9]
    A Longtin J. Stat. Phys. 70 309 (1993)ADSCrossRefGoogle Scholar
  10. [10]
    X L Li and L J Ning Indian J. Phys. 89 189 (2015)ADSCrossRefGoogle Scholar
  11. [11]
    X L Li and L J Ning Indian J. Phys. 90 91 (2016)ADSCrossRefGoogle Scholar
  12. [12]
    Z Q Wang, Y Xu and H Yang Sci. China Technol. Sci. 59 371 (2016)Google Scholar
  13. [13]
    J M G Vilar and J M Rubí Phys. Rev. Lett. 77 2863 (1996)ADSCrossRefGoogle Scholar
  14. [14]
    S Mitaim and B Kosko Proc. IEEE 86 2152 (1998)CrossRefGoogle Scholar
  15. [15]
    H Calisto and M G Clerc New J. Phys. 12 113027 (2010)ADSCrossRefGoogle Scholar
  16. [16]
    N V Agudov, A V Krichigin, D Valenti and B Spagnolo Phys. Rev. E 81 051123 (2010)ADSCrossRefGoogle Scholar
  17. [17]
    H S Wio and S Bouzat Braz. J. Phys. 29 136 (1999)ADSCrossRefGoogle Scholar
  18. [18]
    Y Jia, S N Yu and J R Li Phys. Rev. E 62 1869 (2000)ADSCrossRefGoogle Scholar
  19. [19]
    L S Tsimring and A Pikovsky Phys. Rev. Lett. 87 250602 (2001)ADSCrossRefGoogle Scholar
  20. [20]
    Y Xu, J Wu, H Q Zhang and S J Ma Nonlinear Dyn. 70 531 (2012)MathSciNetCrossRefGoogle Scholar
  21. [21]
    M J He, W Xu, Z K Sun and W T Jia Int. J. Dyn. Control 1 254 (2013)CrossRefGoogle Scholar
  22. [22]
    M J He, W Xu and Z K Sun Nonlinear Dyn. 79 1787 (2015)CrossRefGoogle Scholar
  23. [23]
    B C Zhou and D D Lin Indian J. Phys. 91 299 (2017)ADSCrossRefGoogle Scholar
  24. [24]
    W Wang, Z Yan and X B Liu Phys. Lett. A 381 2324 (2017)ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    V Berdichevsky and M Gitterman Phys. Rev. E 56 6340 (1997)ADSCrossRefGoogle Scholar
  26. [26]
    J H Li J. Phys. Condens. Mat. 22 115702 (2010)ADSCrossRefGoogle Scholar
  27. [27]
    M Borowiec, G Litak, A Rysak, P D Mitcheson and T T Toh J. Phys. Conf. Ser. 476 012038 (2013)CrossRefGoogle Scholar
  28. [28]
    L Fronzoni and R Mannella J. Stat. Phys. 70 501 (1993)ADSCrossRefGoogle Scholar
  29. [29]
    S Saikia, A M Jayannavar and M C Mahato Phys. Rev. E 83 061121 (2011)ADSCrossRefGoogle Scholar
  30. [30]
    W L Reenbohn, S S Pohlong and M C Mahato Phys. Rev. E 85 031144 (2012)ADSCrossRefGoogle Scholar
  31. [31]
    W L Reenbohn and M C Mahato Phys. Rev. E 88 032143 (2013)ADSCrossRefGoogle Scholar
  32. [32]
    S Saikia Physica A 416 411 (2014)ADSCrossRefGoogle Scholar
  33. [33]
    Y F Jin, W X Xie and K H Liu Procedia IUTAM 22 267(2017)CrossRefGoogle Scholar
  34. [34]
    K H Liu and Y F Jin Physica A 392 5283 (2013)ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    Z M Ma and Y F Jin Acta Phys. Sin. 64 240502 (2015)Google Scholar
  36. [36]
    Y F Jin, Z M Ma and S M Xiao Chaos Soliton Fractals 103 470 (2017)ADSCrossRefGoogle Scholar
  37. [37]
    Y Xu, J Q Duan and W Xu Physica D 240 1395 (2011)ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Y Xu, J Feng, J J Li and H Q Zhang Chaos 23 013110 (2013)ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    Y Xu, Y G Li, H Zhang, X F Li and J Kurths Sci. Rep. 6 31505 (2016)ADSCrossRefGoogle Scholar
  40. [40]
    T T Yang, H Q Zhang, Y Xu and W Xu Int. J. Nonlinear Mech. 67 42 (2014)CrossRefGoogle Scholar
  41. [41]
    R Mankin, A Ainsaar and E Reiter Phys. Rev. E 60 1374(1999)ADSCrossRefGoogle Scholar
  42. [42]
    W Zhang and G H Di Nonlinear Dyn. 77 1589 (2014)MathSciNetCrossRefGoogle Scholar
  43. [43]
    H Q Zhang, T T Yang, Y Xu and W Xu Eur. Phys. J. B 88 125 (2015)ADSCrossRefGoogle Scholar
  44. [44]
    I Bena Int. J. Mod. Phys. B 20 2825 (2006)ADSCrossRefGoogle Scholar
  45. [45]
    K Sekimoto J. Phys. Soc. Jpn. 66 1234 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations