Indian Journal of Physics

, Volume 93, Issue 12, pp 1619–1624 | Cite as

Ablation of silicon and ultrathin fibers using single femtosecond pulse

  • Mehra S. SidhuEmail author
  • Kamal P. Singh
Original Paper


We exploit the nonlinear multiphoton interaction of a few-cycle femtosecond (fs) pulse with viscoelastic microfibers in order to produce nanoscale grooves on its surface. The single fs pulse has been extracted from 1 kHz pulse train by double-shutter gating technique by placing two mechanical shutters in the beamline and simultaneously triggering them with a controlled delay. With adjustment of the time delay between two shutters, a small transmission window has been created to cleanly extract a single or desired number of pulses. We found that the single-pulse ablation threshold for microfiber is \(1 \hbox { J}/\hbox {cm }^2\) while for absorbing surfaces like crystalline Si is \(0.01 \hbox { J}/\hbox {cm}^2\). Precise diffraction unlimited ablation of materials opens a route to process nanoscale waveguides, microfluidic devices to isolate cells or macro-molecules.


Ultrafast lasers Silicon Silk Femtosecond laser 


07.60.j Optical instruments and equipment 42.65.Re Ultrafast processes; optical pulse generation and pulse compression 06.60.Jn High-speed techniques (microsecond to femtosecond) 



We thanks I. Singh for SEM images of crystalline silicon surface and central SEM facility for imaging silk. We acknowledge DST and Max Planck Society for financial support.


  1. [1]
    C B Schaffer, N Nishimura, E N Glezer, A M T Kim and E Mazur Opt. Exp.10 196 (2002)ADSCrossRefGoogle Scholar
  2. [2]
    H Gandhi, E Mazur, K Phillips and S K Sundaram Adv. Opt. Photon. 7 684 (2015)CrossRefGoogle Scholar
  3. [3]
    M Malinauskas, A Zukauskas, S Hasegawa, Y Hayasaki, V Mizeikis, R Buividas and S Juodkazis Light: Sci. Appl. 5 e16133 (2016)ADSCrossRefGoogle Scholar
  4. [4]
    N Düdovich, O Smirnova, J Levesque, Y Mairesse, M Yu Ivanov, D M Villeneuve and P B Corkum Nat. Phys. 2 781 (2006).CrossRefGoogle Scholar
  5. [5]
    Z Chang Fundamentals of Attosecond Optics (CRC Press, London, 2011)p.1CrossRefGoogle Scholar
  6. [6]
    J C Hebden, R A Krüger and K S Wong, Appl. Opt. 30 788 (1991)ADSCrossRefGoogle Scholar
  7. [7]
    J C Dean, S R Rather, D G Oblinsky, E Cassette, C C Jumper and G D Scholes, J. Phys. Chem. A 119 9098 (2015)CrossRefGoogle Scholar
  8. [8]
    T Brixner, T Pfeifer, G Gerber, M Wollenhaupt and T Baumert Femtosecond Laser Spectroscopy (Springer, New York, 2005)p.225CrossRefGoogle Scholar
  9. [9]
    L Stebbings, F Sübmann, Y Y Yang, A Scrinzi, M Durach, A Rusina, M I Stockman and M F Kling New J. Phys. 13 073010 (2011)ADSCrossRefGoogle Scholar
  10. [10]
    S Wyatt, T Witting, A Schiavi, D Fabris, P M Hernando, I A Walmsley, J P Marangos and J W G Tisch, OPTICA 3 303 (2016)ADSCrossRefGoogle Scholar
  11. [11]
    B Rethfeld, D S Ivanov, M E Garcia and S I Anisimov, J. Phys. D Appl. Phys. 50(19) 193001 (2017)ADSCrossRefGoogle Scholar
  12. [12]
    N Götte, T Kusserow, T Winkler, C Sarpe, L Englert, D Otto, T Meinl, Y Khan, B Zielinski, A Senftleben, M Wollenhaupt, H Hillmer, and T Baumert Temporally shaped femtosecond laser pulses for creation of functional sub-100 nm structures in dielectrics. In: König K, Ostendorf A (eds.) Optically Induced Nanostructures: Biomedical and Technical Applications (Berlin: De Gruyter) Chapter 3 (2015)Google Scholar
  13. [13]
    J Wentz Polarization Independent Light Modulation Means Using Birefringent Crystals, U.S. patent 3,719,414 (1973)Google Scholar
  14. [14] for Electro-Optic Modulators (last accessed 13 Apr 2018)
  15. [15]
    F D Niso, C Gaudiuso, T Sibillano, F P Mezzapesa, A Ancona and P M Lugara, Opt. Exp. 22 12200 (2014)ADSCrossRefGoogle Scholar
  16. [16]
    U K Tirlapur and K König Nature 418 290 (2002)ADSCrossRefGoogle Scholar
  17. [17]
    A Roberts, D Cormode, C Reynolds, T Newhouse-Illige, L J Brian and A S Sandhu, Appl. Phys. Lett. 99 051912 (2011)ADSCrossRefGoogle Scholar
  18. [18] for Optomechanical Devices SH05, for Optical Shutters LS56, and for Laser shutters and controllers SRS470 and SRS474 (last accessed 13 Apr 2018)
  19. [19]
    D M Mills, Rev. Sci. Instrum. 60 2338 (1989)ADSCrossRefGoogle Scholar
  20. [20]
    M Gembicky and P Coppens J. Synchroton Rad. 14 133 (2007)CrossRefGoogle Scholar
  21. [21]
    D Kosciesza and H D Bartunik J. Synchroton Rad. 6 947 (1999)CrossRefGoogle Scholar
  22. [22]
    R Tucoulou, D V Roshchupkin, O Mathon, I A Schelokov and M Brunel, J. Synchroton Rad. 5 1357 (1998)CrossRefGoogle Scholar
  23. [23]
    A McPherson, W K Lee and D M Mills, Rev. Sci. Instrum. 73 2852 (2002)ADSCrossRefGoogle Scholar
  24. [24]
    M Ye and D Jiang Rev. Sci. Instrum. 61, 2003 (1990)ADSCrossRefGoogle Scholar
  25. [25]
    C S Adams, Rev. Sci. Instrum. 71 59 (2000)ADSCrossRefGoogle Scholar
  26. [26]
    L P Maguire, S Szilagyi and R E Scholten, Rev. Sci. Instrum. 75 3077 (2004)ADSCrossRefGoogle Scholar
  27. [27]
    S Zhang and G Wilson Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators, U.S. patent 8,842,703 (23 September 2014)Google Scholar
  28. [28]
    P Coppens, I Vorontsov, T Graber, M Gembicky and A Y Kovalevsky, Acta Cryst. A 61 162 (2005)CrossRefGoogle Scholar
  29. [29]
    K Kawase, R Kato, A Irizawa, M Fujimoto, K Furukawa, K Kubo and G Isoyama Proc. of FEL 2015, (Daejeon) pp 430–432 (2015)Google Scholar
  30. [30]
    G Romo-Cárdenas, F G Péerez-Gutiérrez , A Mina-Rosales, S Camacho-López, G Aguilar AIP Conf. Proc. (2006)Google Scholar
  31. [31]
    F G P Gutiérrez, S Camacho-Lóopez, and G Aguilar, J. Biomed.Opt. 6(11) 115001 (2011)CrossRefGoogle Scholar
  32. [32]
    M S Sidhu PhD Thesis (University of Science and Technology, Daejeon, Rep. of Korea) (2014)Google Scholar
  33. [33]
    C B Schaffer, A O Jamison, J F Garcia and E Mazur Ultrafast Lasers: Technology and Applications (Marcel Dekker Inc. New York) p 395 (2002)Google Scholar
  34. [34]
    A B Yakar and R Byer J. Appl. Phys. 96 5316 (2004)ADSCrossRefGoogle Scholar
  35. [35]
    A Vogel and V Venugopalan Chem. Rev. 103 577 (2003)CrossRefGoogle Scholar
  36. [36]
    J. M. Liu, Opt. Lett. 7, 196 (1982).ADSCrossRefGoogle Scholar
  37. [37]
    M A de Araújo, R Silva, E de Lima, D P Pereira and P C de Oliveira, Appl. Opt. , 48 393 (2009)ADSCrossRefGoogle Scholar
  38. [38]
    G Tsigaridas, M Fakials, I Polyzos, P Persephonis and V Giannetas, Appl. Phys. B 76 83 (2003)ADSCrossRefGoogle Scholar
  39. [39]
    S Preuss, A Demchuk and M Stuke, Appl. Phys. A 61, 33 (1995)ADSCrossRefGoogle Scholar
  40. [40]
    J Bonse, S Baudach, J Kruger, W Kautek and M Lenzner, Appl. Phys. A 74 19 (2002)ADSCrossRefGoogle Scholar
  41. [41]
    H O Jeschke, M E Garcia, M Lenzner, J Bonse, J Krüger and W Kautek, Appl. Surf. Sci. 197-198 839 (2002)ADSCrossRefGoogle Scholar
  42. [42]
    F Vollrath, B Madsen and Z Shao, Proc. R. Soc. Lond. B 268 2339 (2001)CrossRefGoogle Scholar
  43. [43]
    M S Sidhu, B Kumar and K P Singh, Nat. Mat. 16 938 (2017)CrossRefGoogle Scholar
  44. [44]
    M Ryu, H Kobayashi, A Balytis, X Wang, J Vongsvivut, J Li, N Urayama,V Mizeikis, M Tobin, S Juodkazis and J Morikawa, Mater. Res. Exp. 4 115028 (2017)CrossRefGoogle Scholar
  45. [45]
    H Y Moon, M S Sidhu, H S Lee and S C Jeoung, Opt. Exp. 23 19854 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesIndian Institute of Science Education and Research MohaliManauliIndia

Personalised recommendations