Advertisement

Electron impact excitation of krypton from the metastable state to the \(4p^{5}5p\) levels

  • Z B ChenEmail author
OriginalPaper
  • 19 Downloads

Abstract

Using the fully relativistic distorted-wave method, we calculated electron impact excitation cross sections out of the two metastable levels of \(4p^{5}\)5sJ = 0 and J = 2 into the ten levels of the \(4p^{5}\)5p configuration of krypton. To obtain accurate results, careful consideration is given to the generation of the target state wave functions through the systematic inclusion of electron correlations. We find that the electron correlation has a large influence on the cross sections. This effect weakens as the incident electron energy increases. Our numerical results are compared with the available experimental data and other theoretical values over the measured energy range, showing a good quantitative agreement. We believe that these accurate results will be useful in plasma modeling studies.

Keywords

Metastable state Krypton Electron correlation 

PACS No.

34.80.Dp 

Notes

Acknowledgements

The author would like to thank Professor C Z Dong for his kind help. The support of the National Natural Science Foundation of China (Grant No. 11504421) is acknowledged.

References

  1. [1]
    S Namba et al. Phys. Rev. A 84 053202 (2011)ADSCrossRefGoogle Scholar
  2. [2]
    Y H Chiu et al. J. Appl. Phys. 99 113304 (2006)ADSCrossRefGoogle Scholar
  3. [3]
    G F Karabadzhak et al. J. Appl. Phys. 99 113305 (2006)ADSCrossRefGoogle Scholar
  4. [4]
    S Trajmar et al. Phys. Rev. A 23 2167 (1981)ADSCrossRefGoogle Scholar
  5. [5]
    S Tsurubuchi, H Kobayashi, and M Hyodo J. Phys. B 36 2629 (2003)ADSCrossRefGoogle Scholar
  6. [6]
    J E Chilton, M D Stewart Jr, and C C Lin Phys. Rev. A 62 032714 (2000)ADSCrossRefGoogle Scholar
  7. [7]
    R O Jung, T E Stone, J B Boffard, L W Anderson, and C C Lin Phys. Rev. Lett. 94 163202 (2005)ADSCrossRefGoogle Scholar
  8. [8]
    J B Boffard, T E Stone, L W Anderson, and C C Lin Bull. Am. Phys. Soc. 46 9 (2001)Google Scholar
  9. [9]
    S Kaur, R Srivastava, R P McEachran, and A D Stauffer J. Phys. B 31 4833 (1998)ADSCrossRefGoogle Scholar
  10. [10]
    R O Jung, Tom E Stone, John B Boffard, L W Anderson, and C C Lin Phys. Rev. A 73 022722 (2006)ADSCrossRefGoogle Scholar
  11. [11]
    A Kramida, Yu Ralchenko, J Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.5.6), [Online]. Available: https://physics.nist.gov/asd [2018, April 9]. National Institute of Standards and Technology, Gaithersburg, MD (2018)Google Scholar
  12. [12]
    S Kastner, C Wade, T S Smith, and M Blaha J. Phys. B 8 684 (1975)ADSCrossRefGoogle Scholar
  13. [13]
    Y K Kim Phys. Rev. A 65 022705 (2002)ADSCrossRefGoogle Scholar
  14. [14]
    Z B Chen Eur. Phys. J. D 72 67 (2018)ADSCrossRefGoogle Scholar
  15. [15]
    Z B Chen and C Z Dong Eur. Phys. J. D 72 101 (2018)ADSCrossRefGoogle Scholar
  16. [16]
    Z B Chen, C Z Dong, L Y Xie, and J Jiang. Chin. Phys. Lett. 31 033401 (2014)ADSCrossRefGoogle Scholar
  17. [17]
    G F Du, J Jiang, and C Z Dong Eur. Phys. J. D 63 103 (2011)ADSCrossRefGoogle Scholar
  18. [18]
    C J Bostock, D V Fursa, I Bray, K Bartschat Phys. Rev. A 90 012707 (2014)ADSCrossRefGoogle Scholar
  19. [19]
    C J Bostock, D V Fursa, and I Bray Phys. Rev. A 89 062710 (2014)ADSCrossRefGoogle Scholar
  20. [20]
    A Dasgupta, K Bartschat, D Vaid, A N Grum-Grzhimailo, D H Madison, M Blaha, and J L Giuliani Phys. Rev. A 65 042724 (2002)ADSCrossRefGoogle Scholar
  21. [21]
    X Guo et al. J. Phys. B 33 1921 (2000)ADSCrossRefGoogle Scholar
  22. [22]
    J Zeng, J Wu, F Jin, G Zhao, and J Yuan Phys. Rev. A 72 042707 (2005)ADSCrossRefGoogle Scholar
  23. [23]
    R K Gangwar, L Sharma, R Srivastava, and A D Stauffer Phys. Rev. A 82 032710 (2010)ADSCrossRefGoogle Scholar
  24. [24]
    J Jiang, C Z Dong, L Y Xie, and X X Zhou J.Phys. B 41 245204 (2008)ADSCrossRefGoogle Scholar
  25. [25]
    F A Parpia, C F Fischer, and I P Grant Comput. Phys. Commun. 94 249 (1996)ADSCrossRefGoogle Scholar
  26. [26]
    Z B Chen X L Guo, and K Wang J. Quant. Spectrosc. Radiat. Transf. 206 213 (2018)Google Scholar
  27. [27]
    Z B Chen Phys. Plasmas 24 122119 (2017)ADSCrossRefGoogle Scholar
  28. [28]
    Z B Chen, H W Hu, K Ma, X B Liu, X L Guo, S Li, B H Zhu, L Huang, and K Wang Phys. Plasmas 25 032108 (2018)ADSCrossRefGoogle Scholar
  29. [29]
    S Fritzsche, H Aksela, C Z Dong, S Heinäsmäki, and J E Sienkiewicz Nucl. Instr. Methods B 205 93 (2003)ADSCrossRefGoogle Scholar
  30. [30]
    H L Zhang and D H Sampson Phys. Rev. A 41 198 (1990)ADSCrossRefGoogle Scholar
  31. [31]
    R Srivastava, A D Stauffer and L Sharma Phys. Rev. A 74 012715 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.School of ScienceHunan University of TechnologyZhuzhouChina
  2. 2.College of ScienceNational University of Defense TechnologyChangshaChina

Personalised recommendations