Dynamical stability of electron trajectories in a free-electron laser with quadrupole wiggler

  • M. Hosseini
  • E. SalehiEmail author
  • B. Maraghechi


The dynamical stability of electron trajectories of a free-electron laser with a quadrupole wiggler is studied. For this purpose, the numerical computation of Kolmogorov entropy is used. Self-electric and self-magnetic fields are taken into account, and the focusing of the beam is enhanced by an axial magnetic field. A considerable decrease in the dynamical stability of electron trajectories was found when self-fields are considered. Also, it was found that an axial magnetic field can significantly alter the regular trajectories of the electrons.


Free-electron laser Dynamical stability Kolmogorov entropy Quadrupole wiggler 


41.60.Cr 52.20.Dq 52.59.Sa 02.60.Cb 



  1. [1]
    H Motz J. Apple. Phys. 22, 527 (1951) ADSCrossRefGoogle Scholar
  2. [2]
    R H Pantell, G Soncini, and H E Putoff IEEE J. Quantum Elect. 4, 905 (1968)ADSCrossRefGoogle Scholar
  3. [3]
    J M Madey J. Appl. Phys. 42, 1906 (1971)ADSCrossRefGoogle Scholar
  4. [4]
    W B Colson Phys. Lett. A 59, 1876 (1976)CrossRefGoogle Scholar
  5. [5]
    F A Hopf, P Meystre, M O Scully, and W H Lovisell Phys. Rev. Lett. 37, 1342 (1976)ADSCrossRefGoogle Scholar
  6. [6]
    D A Deacon, L R Elias, J M J Madey, G L Ramian, M A Schwettman and T I Smith Phys. Rev. Lett. 38, 892 (1977)ADSCrossRefGoogle Scholar
  7. [7]
    D B Mcdermott, T C Marshall, S P Schlesinger, R K Parker and V L Granatstein Phys. Rev. Lett. 41, 1368 (1978)ADSCrossRefGoogle Scholar
  8. [8]
    P Sprangle, R A Smith, and V L Granatstein Infrared and Millimeter Waves, edited by K Button Vol. 1 (New York: Academic) (1979)Google Scholar
  9. [9]
    V L Granatdtein, R K Parker and P. Sprangle in Hand book of Laser Science and Technology, edited by M J Weber, Vol. 1, p. 441Google Scholar
  10. [10]
    P Sprangle and T Coffey Phys. Today 37 (3), 44 (1984)CrossRefGoogle Scholar
  11. [11]
    B Levush, T M Antonsen, W M Manheimer and P Sprangle Phys. Fluids 28, 7 (1985)CrossRefGoogle Scholar
  12. [12]
    T M Antonsen, Jr, and B Levush Nonlinear theory of a quadrupole free electron laser. Univ. Maryland Rep. (1987)Google Scholar
  13. [13]
    S Chang, O C Eldridge and J Schared IEEE J. Quantum Electron. 24, 2308 (1988)ADSCrossRefGoogle Scholar
  14. [14]
    M Esmaeilzadeh and G Kheiri Proc. of SPIE 6823, 68230R (2007)CrossRefGoogle Scholar
  15. [15]
    C Chen and R C Davidson Phys. Rev. A 43, 5541 (1991)ADSCrossRefGoogle Scholar
  16. [16]
    M Esmaeilzadeh, M S Fallah, and J E Willet, Phys. Plasma 14, 01303Google Scholar
  17. [17]
    A Bourdier and L Michel-Lours Phys. Rev. E 49, 3353 (1994)ADSCrossRefGoogle Scholar
  18. [18]
    L Michel, A Bourdier, and J M Buzz Nucl. Instrum. Methods Phys. Res. A 304,465 (1991)ADSCrossRefGoogle Scholar
  19. [19]
    C Chen and R C Davidson Phys. Rev. A 42, 5041 (1990)ADSCrossRefGoogle Scholar
  20. [20]
    A Soleyman and H Mehdian Acta Phys. Pol. A 110, 459 (2006)ADSCrossRefGoogle Scholar
  21. [21]
    S Bilikmen and M Abu-Safa Physica Scripta 50, 125 (1994)ADSCrossRefGoogle Scholar
  22. [22]
    S C Zhang and J Elgin Phys. Plasma 11, 1663 (2004)ADSCrossRefGoogle Scholar
  23. [23]
    B Maraghechi and E Salehi Phys. Plasma 17, 084701 (2010)ADSCrossRefGoogle Scholar
  24. [24]
    E Salehi, B Maraghechi and M H Rouhani Phys. Plasmas 17, 113102 (2010)ADSCrossRefGoogle Scholar
  25. [25]
    M Reizer Part. Accel. 8, 167 (1978)Google Scholar
  26. [26]
    M Tabor Chaos and Integrability in Nonlinear Dynamics (New York: Wiley) (1989)zbMATHGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Department of PhysicsAmirkabir University of TechnologyTehranIran
  2. 2.School of Particles and Accelerator PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Department of Chemistry and Physical SciencesPace UniversityPleasantvilleUSA

Personalised recommendations