Advertisement

Harmonic oscillator in Ads and dS spaces

  • B. HamilEmail author
Original Paper
  • 10 Downloads

Abstract

In one-dimensional (anti)-de Sitter background, all commutation relations are modified and the Heisenberg uncertainty principle is changed to the so-called extended uncertainty principle. In this scenario, the commutator between position and momentum operators contains a linear power of coordinate, instead of a constant, and the coordinate representation of the momentum operators for this model becomes coordinate dependent. In this paper, we present an exact solution of the one-dimensional harmonic oscillator in Ads and dS spaces. The eigenfunctions are determined for both cases, and the energy eigenvalues equation is obtained. From the obtained spectrum energy, the thermodynamic properties of the harmonic oscillator in AdS space are then analyzed.

Keywords

Generalized uncertainty principle (Anti)-de Sitter space Extended uncertainty principle 

PACS Nos.

03.65.Ge 03.75.Hh 

Notes

References

  1. [1]
    K Konishi, G Pauti and P Provero Phys. Lett. B 234 276 (1990)ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S Capozziello, G Lambiase and G Scarpetta Int. J. Theor. Phys. 39 15 (2000)CrossRefGoogle Scholar
  3. [3]
    F Scardigli and R Casadio Class. Quantum Gravity 20 3915 (2003)ADSCrossRefGoogle Scholar
  4. [4]
    L J Garay Int. J. Mod. Phys. A 10 145 (1995)ADSCrossRefGoogle Scholar
  5. [5]
    A Kempf and G Mangano Phys. Rev. D 55 7909 (1997)ADSCrossRefGoogle Scholar
  6. [6]
    A Kempf, G Mangano and R B Mann Phys. Rev. D 52 1108 (1995)ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A Kempf J. Math. Phys. 35 4483 (1994)ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    P A M Dirac Ann. Math. 35 657 (1935)CrossRefGoogle Scholar
  9. [9]
    S Mignemi Ann. Phys. 522 924 (2010)MathSciNetCrossRefGoogle Scholar
  10. [10]
    S Mignemi Mod. Phys. Lett. A 25 1697 (2010)ADSCrossRefGoogle Scholar
  11. [11]
    M-I Park Phys. Lett. B 659 698 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    W S Chung and H Hassanabadi Mod. Phys. Lett. A 32 1750138 (2017)ADSCrossRefGoogle Scholar
  13. [13]
    W S Chung and H Hassanabadi J. Korean Phys. Soc. 71(1) 13 ( 2017).ADSCrossRefGoogle Scholar
  14. [14]
    W S Chung and H Hassanabadi Phys. Lett. B 785 127 (2018)ADSCrossRefGoogle Scholar
  15. [15]
    W S Chung and H Hassanabadi Mod. Phys. Lett. A 33(26) 1850150 (2018)ADSCrossRefGoogle Scholar
  16. [16]
    S Ghosh and S Mignemi Int. J. Theor. Phys. 50 1803 (2011)CrossRefGoogle Scholar
  17. [17]
    B Mirza and M Zarei Phys. Rev. D 79 125007 (2009)ADSCrossRefGoogle Scholar
  18. [18]
    B Hamil and M Merad Eur. Phys. J. Plus 133 174 (2018)ADSCrossRefGoogle Scholar
  19. [19]
    B Hamil and M Merad Int. J. Mod. Phys. A 33 1850177 (2018)ADSCrossRefGoogle Scholar
  20. [20]
    N Messai, B Hamil and A Hafdallah Mod. Phys. Lett. A 33(34) 1850202 (2018)ADSCrossRefGoogle Scholar
  21. [21]
    C Dullemond and E van Beveren J. Math. Phys. 26 2050 (1985)ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    T Zhu, J-R Ren and M-F Li Phys. Lett. B 674 204 (2009)ADSCrossRefGoogle Scholar
  23. [23]
    B Bolen, M Cavaglia Gen. Relativ. Gravit. 37 1255 (2005)ADSCrossRefGoogle Scholar
  24. [24]
    I S Gradshteyn and I M Ryzhik Table of Integrals, Series and Products (New York: Academic Press) (1979)zbMATHGoogle Scholar
  25. [25]
    L N Chang, D Minic, N Okamura and T Takeuchi Phys. Rev. D 65 125027 (2002)ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    C Quesne J. Math. Phys. 54 122103 (2013)ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    W S Chung and H Hassanabadi Mod. Phys. Lett. B 32(10) 1850123 (2018)ADSCrossRefGoogle Scholar
  28. [28]
    H Hassanabadi, S Sargolzaeipor and W S Chung Physica A Stat. Mech. Appl. 508 740 (2018)ADSCrossRefGoogle Scholar
  29. [29]
    B Hamil Mod. Phys. Lett. A 32(31) 1750176 (2017)ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A Boumali, L Chetouani and H Hassanabadi Acta Phys. Pol. B 47 2067 (2016)ADSCrossRefGoogle Scholar
  31. [31]
    M Falek, M Merad and T Birkandan J. Math. Phys. 58 023501 (2017)ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    K Nouicer J. Phys. A 39 5125 (2006)ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    B-Q Wang, Z-W Long, C-Y Long and S-R Wu Indian J. Phys. 92 1419 (2018)ADSCrossRefGoogle Scholar
  34. [34]
    B Khosropour Indian J. Phys. 92 43 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Indian Association for the Cultivation of Science 2019

Authors and Affiliations

  1. 1.Département de TC de SNVUniversité Hassiba BenboualiChlefAlgeria

Personalised recommendations